Small-Angle Neutron Scattering And Polarization Analysis Of Magnetic Materials

NCNR Summer School 2024

jonathan.gaudet@nist.gov

NL

- What is Small-Angle Neutron Scattering (SANS) and how can we use it with polarized neutrons to gain insights into magnetic properties of materials?

The neutron properties are well tuned to study materials

- Lifetime ~ 15 min

- No charge

- Mass = $1.67492*10^{-27}$ kg

- Spin = 1/2

As a crude approximation, a spin can be seen as an intrinsic angular momentum ("spinning") that produces a magnetization

Generally, a neutron scattering experiment consists of counting the number of neutrons scattered by a sample in different directions.

For this talk, we assume elastic scattering only

$$\Delta E = 0$$

Neutron cross-sections are helpful to characterize the strength of interaction between the sample and the neutron

** A macroscopic diff. cross-section is often used, which divides the diff. cross-section by the volume of the sample.

A neutron interacts with the atoms within a material via 2 different ways

$$\hat{V}_N(oldsymbol{r}_n,oldsymbol{R}_N) = -rac{2\pi\hbar^2}{m_n}b\,\delta(oldsymbol{r}_n-oldsymbol{R}_N)$$

b: Neutron Scattering length (~ 1fm = 1e-15 m)

Magnetic Dipole-Dipole Interaction

The neutron differential cross-section probes the Fourier transformation of the density (ρ) and magnetization (M) of a material

SANS: Small-Angle (low Q) neutron scattering is a technique designed to probe "long" length scale structures.

Liu, Dong et al. "Current progresses of small-angle neutron scattering on soft-matters investigation." Nuclear Analysis (2022): 100011.

SANS is useful for various hard condensed matter systems

K. Everschor-Sitte et al., J. Appl. Phys. 115, 172602(2014)

Magnetic domain Walls

S. Oberdick et al., Sci. Reports 8, 3425 (2018)

Flux lattice In superconductors

J. Hoffman STM Lab

NCNR is the host of 5 different SANS instruments

V-SANS is an extremely versatile neutron instrument

SANS from Nuclear Scattering: Scattering from uncorrelated (diluted) spheres

$$d\vec{r} \mid^2 = 9b \left(\frac{\sin(QR) - QR\cos(QR)}{(QR)^3} \right)^2$$

Zeros of the function are located at:

cated at: '2)

SANS from Nuclear Scattering: Scattering from a face-centered cubic (fcc) crystal lattice

$$|Q_{Bragg}| = \frac{2\pi}{a}\sqrt{H^2 + K^2 + L^2}$$

For the fcc lattice, the peaks have finite intensity if the integers H,K, and L are all odd or all even.

SANS from Magnetic Scattering

 $\frac{d\sigma}{d\Omega}(\vec{Q}) \propto |\int_{V} M_{\perp Q}(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r}|^2$

S. Oberdick et al., Sci. Reports 8, 3425 (2018)

The magnetic interaction depends on the relative orientation of the spins within the probed sample

Rule 1: Nuclear scattering does <u>not</u> flip the neutron spin

Rule 2: Magnetic scattering is only sensitive to magnetization perpendicular to the momentum transfer Q

Rule 3: The non spin-flip scattering is only sensitive to magnetization parallel to the neutron spin

Rule 4: Magnetization perpendicular to the neutron spin only contributes to spin-flip scattering

Non Spin-Flip (NSF)

Example: Unpolarized SANS of a non-magnetic slab

Non-magnetic slab in the beam (neutron beam goes in the page)

Example:Unpolarized SANS of a magnetic slab

Non-magnetic slab in the beam (neutron beam goes in the page)

Example:Unpolarized SANS of a magnetic slab

Non-magnetic slab in the beam (neutron beam goes in the page)

Example: Unpolarized SANS of a magnetic slab

Example: Unpolarized SANS of a magnetic slab

<u>Non Spin-Flip (NSF)</u>

Uniaxial Polarization Analysis : General Rules

1) Nuclear scattering is always non-spin-flip (NSF)

2) The magnetization parallel to the scattering momentum vector **Q** cannot be observed.

3) and 4) Magnetic scattering is both spin-flip (SF) and NSF. The NSF is given by the magnetization *parallel* to the neutron spin, while the SF is given by the magnetization *perpendicular* to the neutron spin.

Nuclear Scattering

$$\langle \mathbf{S}' | b | \mathbf{S} \rangle = b \langle \mathbf{S}' | \mathbf{S} \rangle = \begin{cases} b \begin{cases} |\uparrow\rangle \rightarrow |\uparrow\rangle \\ |\downarrow\rangle \rightarrow |\downarrow\rangle \end{cases} \text{Non-spin-flip} \\ 0 \begin{cases} |\uparrow\rangle \rightarrow |\downarrow\rangle \\ |\downarrow\rangle \rightarrow |\uparrow\rangle \end{cases} \text{Spin-flip} \end{cases}$$

Magnetic Scattering

$$\langle \mathbf{S}' | V_m(\mathbf{Q}) | \mathbf{S} \rangle = -\frac{\gamma_n r_0}{2\mu_B} \begin{cases} M_{\perp z}(\mathbf{Q}) & |\uparrow\rangle \rightarrow |\uparrow\rangle \\ -M_{\perp z}(\mathbf{Q}) & |\downarrow\rangle \rightarrow |\downarrow\rangle \\ M_{\perp x}(\mathbf{Q}) - iM_{\perp y}(\mathbf{Q}) & |\uparrow\rangle \rightarrow |\downarrow\rangle \\ M_{\perp x}(\mathbf{Q}) + iM_{\perp y}(\mathbf{Q}) & |\downarrow\rangle \rightarrow |\uparrow\rangle \end{cases}$$

V-SANS : uniaxial polarization analysis can be performed

S. Oberdick et al., Sci. Reports 8, 3425 (2018)

V-SANS : Uniaxial polarization analysis can be performed

1) Unpolarized

 $I(q) = I_{uu}(q) + I_{ud}(q) + I_{du}(q) + I_{dd}(q)$

S. Oberdick et al., Sci. Reports 8, 3425 (2018)

2) Half-polarized (polarizer only) 3) Full polarized mode (polarizer and analyzer)

l_{uu}(q) $I_{u}(q) = I_{uu}(q) + I_{ud}(q)$ $I_{ud}(q)$ $I_{d}(q) = I_{du}(q) + I_{dd}(q)$ $I_{du}(q)$ $I_{dd}(q)$

Unpolarized SANS: Weyl-mediated magnetism in NdAlSi

Unpolarized SANS: Weyl-mediated magnetism in NdAlSi

J. Gaudet al., Nature Materials 20, 1650-1656 (2021) -

Unpolarized SANS: Weyl-mediated magnetism in NdAlSi

J. Gaudet al., Nature Materials 20, 1650-1656 (2021)

Example of Half-polarized SANS: Identifying the weak magnetic scattering in nanoparticles (NPs) system

C. Kons et al., PRM 4, 034408 (2020)

S. Oberdick et al., Sci. Reports 8, 3425 (2018)

K. L. Krycka et al., PRB **90**, 180405(R) (2014)

*Assuming isotropic system with only the X (field) direction being unique

 $M^2_x = M^2_{parl}$

 $M_y^2 = M_z^2 = M_{perp}^2$

K. L. Krycka et al., PRB **90**, 180405(R) (2014)

$$N^{2}(Q) = \frac{1}{2}(I_{\theta=0^{\circ}}^{++} + I_{\theta=0^{\circ}}^{---}),$$
$$M_{\text{PARL}}^{2}(Q) = \frac{(I_{\theta=90^{\circ}}^{--} - I_{\theta=90^{\circ}}^{+++})^{2}}{16N^{2}},$$
$$M_{\text{PERP}}^{2}(Q) = \frac{1}{6}(I_{\theta=0^{\circ},90^{\circ}}^{+--} + I_{\theta=0^{\circ},90^{\circ}}^{-+-+}),$$

*Assuming isotropic system with only the X (field) direction being unique

$$M^2_x = M^2_{parl}$$
 $M^2_y =$

 $M^2_y = M^2_Z = M^2_{perp}$

Full-polarized SANS: Characterizing the long-wavelength spin density wave in BiFeO₃

Full-polarized SANS: Characterizing the long-wavelength spin density wave in BiFeO₃

It is magnetic in origin 1) 2) Its spin component is \perp to both [111] and τ

Ramazanoglu, M. et al., PRL **107**, 207206 (2011)

1) Magnetic SANS is used to probe magnetic inhomogeneities on a spatial length scale of ~ 1 to 10 000 nm.

2) NCNR is the host of 5 different SANS instruments including V-SANS, which is a very versatile instrument that also allows for uniaxial polarization analysis.

3) Polarized SANS can be used to isolate a weak magnetic signal that lies on top of a huge nuclear scattering signal, to characterize the 3D magnetization profile of NPs, to determine the spin orientation and chirality of spin density wave, and much more...

Conclusion

Conclusion: Please contact us to do polarized SANS at NIST!

Thanks to:

Kathryn Krycka Julie Borchers Wangchun Chen Shannon Watson John Barker Brian Maranville Caitlin Wolf Katie Weigandt Peter Beaucage

Polarized SANS at NIST:

Julie Borchers Wangchun Chen Shannon Watson

jonathan.gaudet@nist.gov

