

Using Chemical Vapor Deposition to Grow Thin Film UTe₂

Talya Lebson, NCNR Surf Student Mentor: Dr. Nick Butch

Outline

- Plans for NIST with Chemical Vapor Deposition (CVD)
- Introduction to CVD
- Applications of CVD
- History of Thin Film Uranium Compound Growth
- My Contribution to the Project

What does NIST hope to use CVD for?

The goal to is to grow UTe₂ (Uranium ditelluride) thin film crystals using the CVD technique.

Growing thin film UTe₂ is special because:

- It is a superconductor at low temperatures
- Could be used for future devices
- No one has done it before!

National Institute of Standards and Technology

What makes UTe₂ Unique?

UTe₂ has spin triplet superconductivity

This could be very useful for future quantum technology!

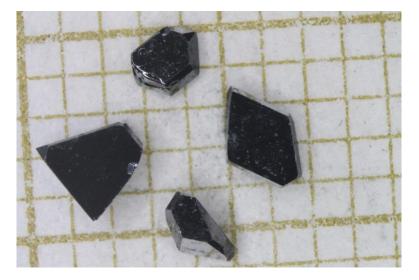


Image from NIST

What is CVD?

CVD (Chemical Vapor Deposition) is a technique used to grow thin film crystals on a substrate by heating up the reactant gases to create new chemical bonds.

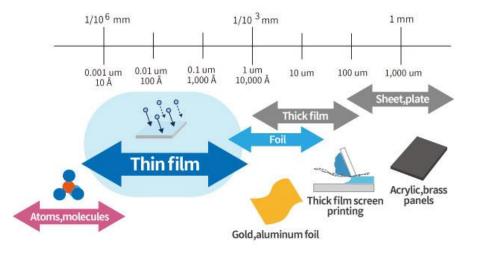
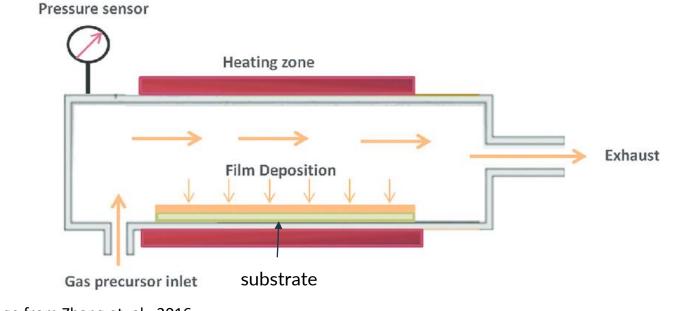
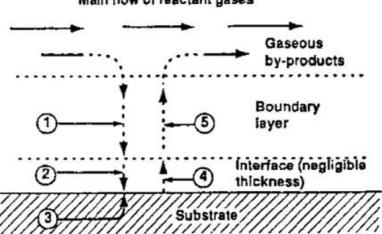



Image from Vac Coat

How does CVD work?

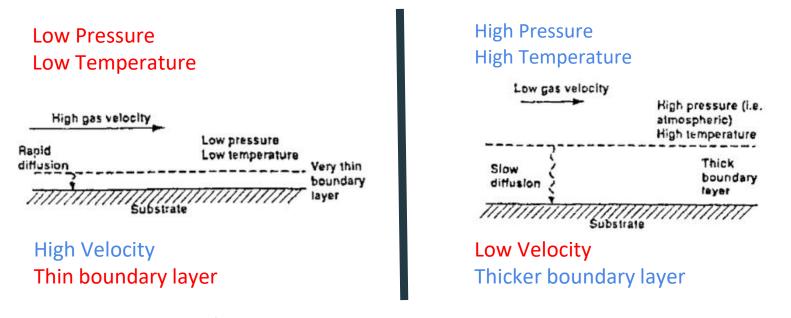

What increases the likelihood of the desired compound growing?

Gibbs Free energy Equation:

$\Delta G_r = \sum \Delta G_{\text{products}} \sum \Delta G_{\text{reactants}}$

What other scientific considerations need to be considered? Main flow of reactant gases

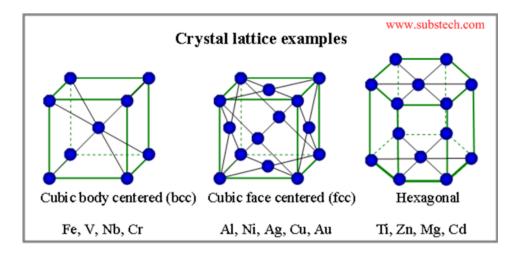
Diagram that demonstrates flow of the gas in the process of CVD



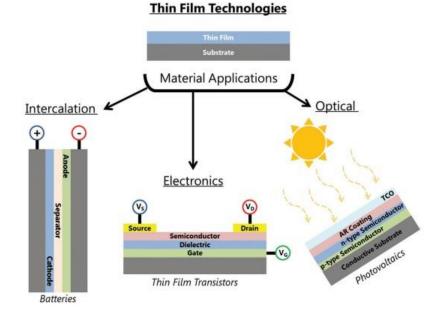
- 1. Diffusion in of reactants through boundary layer
- 2. Adsorption of reactants on substrate
- 3. Chemical reaction takes place
- 4. Descrption of adsorbed species
- 5. Diffusion out of by-products

Figure 2.3. Sequence of events during deposition.

8


What controls the growth rate of the crystals?

The goal is to find a balance between these two extremes


9

How do you know what substrate to use?

The substrate should match the crystal on lattice structure and parameters

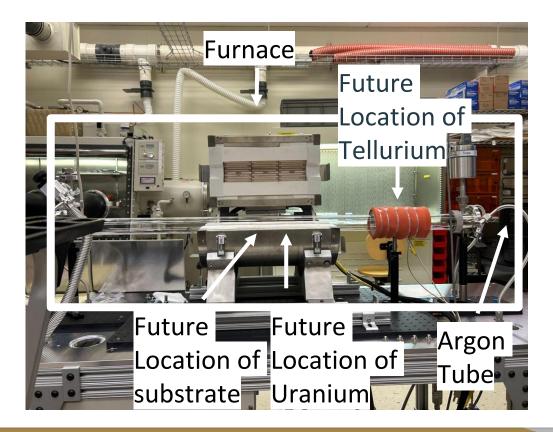
What are the applications of CVD?

Image from Vac Coat

History of Thin Film Uranium Compound Growths

- Only dates back to the 1960s
- Not very common for labs to grow thin film uranium compounds
- UO₂ is the most common Uranium compound grown
- Biggest challenges in growing Uranium compounds has been:
 - Lattice matching
 - Surface oxidation

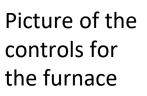
History of Thin Film Uranium Compound Growths Continued



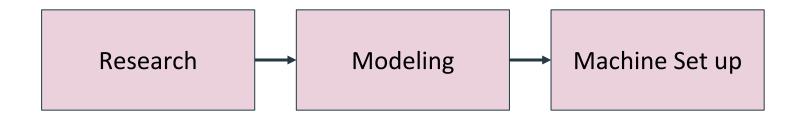
- Scientists have been experimenting over the years with different:
 - Growth techniques (such as CVD and sputtering)
 - Uranium Compound growths (such as UO₂ and UN)
 - Substrates to deposit on (such as MgO and Sapphire)
 - Starting materials (such as Uranium Oxide and Uranium lodine)
 - Amounts of starting material

The Furnace

Description of Furnace



More Pictures!


View of open furnace from the side View of closed Furnace

Picture of the canister to hold Uranium exhaust

CVD Modeling Equation

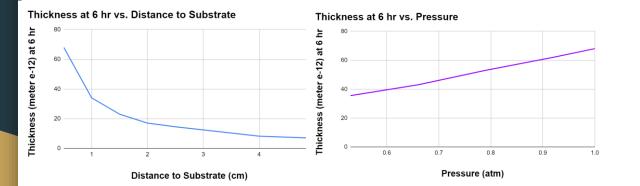
$$M = \frac{DA}{\mathbf{L}R\mathbf{T}} \Delta P$$

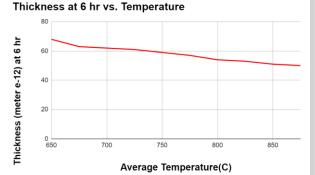
M = Mass Transport (kg/s)

- D = Diffusion Coefficient = $1.64E-05 \text{ cm}^2/\text{s}$
- A = Cross Area of CVD Pipe = 17.35 cm^2

Experimented with different:

- Distance to Substrate (L)
- Temperature (T)
- Pressure (ΔP)


L = Distance between source and substrate (cm) = Adjusted between .5 and 5 cm


R = Ideal Gas Constant = 82 cm³ atm/deg

T = Initial Temperature (C) = Adjusted between 650 and 850 $^\circ\mathrm{C}$

 ΔP = change in pressure (atm) = Adjusted between .53 and 1 atm

CVD Modeling Graphs and Conclusions

It is best to have:

- Shortest Distance to Substrate
- Highest Pressure Possible
- Lowest Average Temperature

Acknowledgements

Butch Lab (Left to Right):

- Thomas Halloran
- Corey Frank
- Nick Butch
- Gicela Saucedo Salas
- Peter Czajka
- Sylvia Lewin

NIST Staff working on CVD Project:

- Berc Kalanyan
- Albert Davydov
- Sergiy Krylyuk

NCNR SURF OUs:

- Julie Borchers
- Leland Harriger
- Susana Teixeira

Past SURF Student: Kimia Samieinejad

Thank you!

21