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Abstract—This paper introduces the systems of THUEE for
the IARPA Open Automatic Speech Recognition Challenge (Ope-
nASR21). We compete in two training conditions, Constrained
and Constrained-plus. For Constrained Training Condition, we
adopt the hybrid NN-HMM acoustic model to construct our
basic Automatic Speech Recognition (ASR) systems. To alleviate
the problem of Out-Of-Vocabulary (OOV), we use grapheme-
to-phoneme (G2P) method and lexicon extending to make the
pronunciation lexicons more comprehensive. The acoustic model
CNN-TDNN-F and CNN-TDNN-F-A, which adopts self-attention
mechanism are utilized. As for low-resource condition, we apply
speed perturbation, SpecAugment, noise addition as well as
reverberation to the original speech data as data enhancement.
Besides, we train the Languages Model (LM) with some external
text data from Build set of IARPA Babel program. Lattice
rescoring with RNNLM is applied as well. System fusion is
conducted by lattice combination and ROVER. For Constrained-
plus Training Condition, we adopts the self-supervised learning
framework wav2vec2.0. The released pre-trained model XLSR-
53 is employed by different fine-tuning methods. It is helpful
to make use of the extra speech data in Babel program in an
unsupervised way. During inference, we try to segment the audio
with different Speech Activity Detection (SAD) methods, which
are complementary at system fusion.

Keywords— low-resource languages, OpenASR2021, lex-
icon extending, data augmentation, wav2vec2.0

I. INTRODUCTION

The OpenASR21 Challenge is the third open challenge
created out of the Intelligence Advanced Research Projects
Activity (IARPA) Machine Translation for English Retrieval
of Information in Any Language (MATERIAL) program1.
The goal of the OpenASR21 is to assess the state of the
art of Automatic Speech Recognition (ASR) technologies
for low-resource languages. Different from OpenASR20, five
new languages are added except the ten languages, and the
Constrained-plus Training Condition is offered as a new track.
Three of the new languages feature additional evaluation
datasets for which the output will be scored using case-
sensitive criteria. For most of the languages in the world, there
are no applicable ASR systems because of the lack of high-
quality annotation speech data. It is challenging to built an
strong ASR system with limited speech data, script texts as
well as lexicons. The capabilities tested in the open challenges
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are expected to ultimately support the MATERIAL task of
effective triage and analysis of large volumes of data in a
variety of less-studied languages2.

We describe our ASR systems in detail to show the whole
procedure for the Constrained and Constrained-plus Training
Condition that we deal with the challenges respectively.

For Constrained Training Condition, we concentrate on
hybrid acoustic models with CNN-TDNN-F and CNN-TDNN-
F-A network as the essential part, which are trained with
Lattice-Free Maximum Mutual Information (LF-MMI) crite-
rion [1]. The latter introduces self-attention mechanism [2]
to the combination of CNN and TDNN-F [3] in order to
learn more positional information from the input. Out-Of-
Vocabulary (OOV) problem is a significant challenge un-
der low-resource condition so that we apply grapheme-to-
phoneme (G2P) as well as lexicon extending to obtain more
comprehensive pronunciation lexicons. We combine some
different kinds of data augmentation methods to get additive
improvement, such as speed perturbation [4], volume perturba-
tion, SpecAugment [5] and noise addition with MUSAN [6].
They are effective to the ASR performance especially under
low-resource condition. Lattice rescoring with RNNLM are
performed forward and backward successively [7]. Besides,
systems’ diversity is important for the final fusion. We have
trained three systems for each language to make further use
of the differences of the single systems by system fusion.

For Constrained-plus Training Condition, we obtain evident
improvements with extra unlabeled speech data from Babel
program3 and unsupervised pre-trained model of wav2vec2.0
[8] compared to Constrained Training Condition. We uti-
lize two fine-tuning methods to build our systems. Multiple
systems trained with training transcripts dealt by different
rules and inference results with different Speech Activity
Detection (SAD) methods are useful at fusion phase. Besides,
the systems trained in Constrained Training Condition can play
a role as well in fusion systems.

We briefly introduce our workflows in Sec.II. The systems
for Constrained and Constrained-plus Training Condition are
described detailed in Sec.III and Sec.IV respectively. Then we
show the final results of the EVAL datasets in Sec.V. Finally,
hardware and time information are given in Sec.VI.

2https://www.nist.gov/document/openasr21-challenge-evaluation-plan
3https://www.iarpa.gov/index.php/research-programs/babel



II. WORKFLOW

A. Constrained Training Condition

We perform the experiments with Kaldi speech recognition
toolkit [9]. Since NN-HMM acoustic model usually has more
promising performances for low-resource ASR than end-to-
end model, we develop our systems with the hybrid structure.
The brief workflow is showed in Fig.1, which consists of pre-
processing, training, decoding and system fusion roughly.

Regarding to the lexicons, we extend the pronunciation lex-
icons from IARPA Babel program [10] instead of the provided
ones. G2P is used to deal with OOV words additionally for
the three languages not in Babel program.

Then, the Gaussian Mixture Models (GMM) are trained
by several training and force-aligning iterations. Some aug-
mentation methods can directly process the raw audio to add
diversity and enlarge the quantity of training data, such as
speed perturbation [4] and reverberation. The MUSAN dataset
[6] is uesd for augmentation. High-resolution MFCC features
and pitch features are extracted from the augmented data.
Besides, SpecAugment [5] is applied to the combined acoustic
features to augment data further. When training the acoustic
model, we also add i-vectors along with the acoustic features
to integrate speaker information into the model.

As for language model, we build a N-gram LM by SRILM
[11] with some extra text data. In addition, a Recurrent Neural
Network (RNN) LM is also used to rescore lattices after
decoding. Finally, several different system outputs are fused
by lattice combination method [12] or ROVER [13] to obtain a
better performance. The details are described in the following
sections.

B. Constrained-plus Training Condition

The fairseq toolkit4 is mainly used under Constrained-
plus Training Condition. We apply the open-sourced self-
supervised pre-trained wav2vec2.0 [8] model to our systems.
For model compatibility, all the speech data provided are up
or down sampled to 16k Hz.

As for the modeling units during fine-tuning the model, we
use characters or graphemes directly in the transcripts. The
model is fine-tuned by two kinds of texts with little differences,
that are full texts and text with OOV words filtered.

Futhermore, we train the pre-trained wav2vec2.0 model
with the speech data of the corresponding language in Babel
program in the unsupervised way before fine-tuning. System
fusion with different SAD segments are helpful. The results
from Constrained Training Condition can make contributions
as well.

III. CONSTRAINED TRAINING CONDITION

A. Lexicon

As mentioned above, most of languages in the challenge
are from Babel Program. The corresponding pronunciation
lexicons in Babel program can cover almost all the words in
the train and development set texts. However, for the languages

4https://github.com/pytorch/fairseq

from MATERIAL program and the languages using Case-
Sensitive-Scoring criteria, the Babel lexicons are not available
and the OOV rate of these languages can reach up to 20
percent with the lexicons provided. To solve the problem
caused by OOV words, we use Language G2P models to
generate approximate pronunciations for the OOV words of
these languages. We use G2P models from LanguageNet [14]
which provides Phonetisaurus [15] FST G2P models of around
150 languages, to generate OOV words appeared in train and
development set and append them to the original pronunciation
lexicons.

We perform lexicon expansion for all the languages to
relieve the effects brought by OOV words further. The lexicon
extension procedure generates pronunciations and probabilities
for the generated words so that we can assign probabilistic
quality to ”unknown words” in the language model. First, we
treat all entries in the original lexicon as sentences, where
each syllable corresponds to a symbol. We train the 3-gram
language models by SRILM [11], with some extra text data
from IARPA Babel program [10] in addition to transcripts
of the provided training data. Then, we generate 12 million
sentences from this language model, and for each unique
sentence in the generated sentences, we compute its language
model probability. The sentences corresponding to the words
in the original lexicon are excluded and only the best 1 million
sentences remain. Next, we use G2P to get the top few likely
spellings corresponding to each generated pronunciation, while
recording the probability of each spelling. Finally, we expand
the original lexicon with 1 million new entries.

B. Acoustic Model

1) Architecture: The CNN-TDNN-F network is adopted as
the neural network acoustic model, which combines Convo-
lution Neural Network (CNN), Factored Time Delay Neural
Network (TDNN-F) [3]. We also employ CNN-TDNN-F-A
architecture as the same time that combines self-attention
mechanism [16]. In [2] the self-attention layer was adopted
in a time-restricted fashion, which is more suitable for speech
recognition. The popular TDNN-F networks are the basic part
of our acoustic model, which is structurally the same as a
TDNN whose layers have been compressed via SVD, but is
trained from a random start with one of the two factors of each
matrix constrained to be semi-orthogonal. A regular TDNN-F
block consists of a linear layer, an affine component, a ReLU
nonlinearity component, and batch normalization operation
followed by dropout.

CNN has been applied to the speech recognition task suc-
cessfully by introducing three extra concepts over the simple
fully connected feed-forward NN: local filters, max-pooling,
and weight sharing [17]. Previous experiments have showed
the efficiency of CNN-TDNN [18]. In our architecture, the
convolution block is obtained by a convolutional layer and a
ReLU nonlinearity component followed by batch normaliza-
tion. We adopt 6 convolution blocks at the beginning of the
acoustic model with concatenation of i-vectors and MFCCs as
input. For some languages, such as Cantonese and Tamil, the
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Fig. 1. Workflow of the ASR system.
The main system process can be roughly divided into pre-processing (yellow), training and decoding (green) and post-processes such as system fusion (blue).

pitch features are appended as well. The number of filters is
48, 48, 64, 64, 64, 128 successively.

The AM networks contain 11 TDNN-F blocks in total with
the hidden dimension of 768 and a bottleneck dimension of
160 same for all the layers. All the TDNN-F layers except for
the first layer connected to the CNN component have a time
stride of 3. As for CNN-TDNN-F-A, the self-attention model
is composed of an affine component, an attention nonlinearity
component, and a ReLU nonlinearity component followed by
batch normalization. The location of the layer should be close
to the end of the network to obtain better performance. And
we set the self-attention block the third layer from the bottom.
In detail, the multi-head attention component has 20 attention
heads along with a key-dimension of 8 and a value-dimension
of 16. The context is set to 15 and 6 for left and right direction
respectively. The settings are adjusted to fit for the network
dimension 768 according to some conclusions in [2]. For
example, a key to value ratio of 0.5 about is usually better
than other ratios.

2) Training Settings: Following the hybrid system training
pipeline, we first train the GMM-HMM models, which use
GMM to model the HMM output probability density, to
produce high-quality alignments to force-align the training
dataset for the NN-based acoustic model. We use Perceptual
Linear Prediction (PLP) feature with pitch feature to train the
GMM-HMM model. The iterative training process including
modeling monophone, creating triphone model, applying Lin-
ear Discriminant Analysis (LDA) and Maximum Likelihood
Linear Transform (MLLT), performing speaker adaptive train-
ing.

The NN acoustic models of our systems are based on
high-resolution MFCC feature with pitch feature for some
languages,such as Cantonese Georgian, Tagalog and Tamil.
For the rest languages, only MFCC features are used. We
also use i-vector features for speaker adaptation. I-vectors are
fixed-length vectors containing speakers information, and have
become a common technique for speaker recognition. In our
systems, we train the i-vectors based on a diagonal UBM for

speaker adaptation [19]. In order to adapt to the CNN structure,
the extracted 100-dim i-vectors are mapped to 200-dim by
linear transformation before concatenating with MFCCs.

For training procedure, the acoustic models are trained with
chain/chain2 component of Kaldi toolkit which adopts LF-
MMI criterion [1]. The batch size is set to 128 with 6 epochs
training in total. The initial learning rate is 0.001 and decays
to 0.0001 finally.

C. Language Model

We train the 3-gram language models with kn discount by
SRILM [11], with some extra text data from IARPA Babel
program [10] in addition to transcripts of the provided training
data. Below is the related datasets in IARPA Babel program,
and only transcripts of the training part are used. For the
languages not in Babel program, only the texts from the 10
hours training set provided is used to train the Language
models.

TABLE I
THE EXTRA USED TEXTS IN IARPA BABEL PROGRAM.

Language Version #words

Amharic IARPA-babel307b-v1.0b-build 281k
Cantonese IARPA-babel101b-v0.4c-build 892k
Guarani IARPA-babel305b-v1.0c-build 311k
Javanese IARPA-babel402b-v1.0b-build 309k
Kazakh IARPA-babel302b-v1.0a-build 270k
Kurmanji IARPA-babel205b-v1.0a-build 346k
Mongolian IARPA-babel401b-v2.0b-build 403k
Pashto IARPA-babel104b-v0.bY-build 888k
Swahili IARPA-babel202b-v1.0d-build 287k
Tagalog IARPA-babel106-v0.2g-build 595k
Tamil IARPA-babel204b-v1.1b-build 486k
Vietnamese IARPA-babel107b-v0.7-build 923k

Besides, we also employ lattice rescoring with NN-based
LMs, which are composed by several TDNN-LSTM networks
[7]. The training data for the NN-based LMs are the same as
above. Furthermore, we use the same network trained on the



reversed text to rescore lattices that are just rescored with the
forward LMs.

D. Data Augmentation

Since the major challenge is to deal with low-resource
condition, it’s essential to adopt appropriate methods of data
augmentation. In order to make full use of the limited training
data, we adopt several popular techniques at the same time
to enhance the robustness of our ASR systems and make our
system more invariant to properties of the evaluation data.

1) Speed Perturbation: In [4], speed perturbation is pro-
posed as an effective data augmentation method by processing
the raw signal. We adopt the method to change the speed
of the training audio signal, producing 3 versions of the
original signal with speed factors of 0.9, 1.0 and 1.1, which is
beneficial to avoid overfitting and improve robustness of the
models. By speed perturbation, we increase the data quantity
by three times.

2) Volume Perturbation: Volume perturbation is adopted
after speed perturbation, which is also conducted on the raw
speech audio. It improves the volume robustness of the model.

3) SepcAugment: We apply SpecAugment [5] to the MFCC
features, along with pitch feature for some languages, before
input to the acoustic neural networks. The policy consists of
warping the features, masking blocks of frequency channels,
and masking blocks of time steps.

4) Noise: We consider the impact of noise type, signal-to-
noise ratio and reverberation. Especially, voice data reverbera-
tion is generated by simulated room impulse responses (RIRs)
and speech convolution [20], of which the parameters include
room size, room width, room height, speaker location, receiver
location etc. We enlarge speech data by adding MUSAN noise
with predefined SNR [21]. With the help of MUSAN dataset,
we quadruple the amount of data using enhancement method
consists of babble, music and noise. Additionally, RIRs dataset
is expanded by reverberation enhancement a mentioned.

E. Pre-and-Post processing

1) Speech Activity Detection: For the evaluation period,
Speech Activity Detection (SAD) is a necessary operation to
segment the audio appropriately so that we can decrease loss of
useful speech clips and improve the decoding efficiency and
accuracy. The SAD system follows work proposed in [22],
described in detail in [23]. In our SAD component, we com-
bine a convolutional recurrent neural network (CRNN) and
a recurrent neural network (RNN) to make the system more
robust. In addition, we add a speech-enhancement module and
a one-dimensional dilation-erosion module to our SAD system.
For each audio input, firstly, we preprocess it and extract the
fbank features. The subsystems output speech existence in
every frame separately. Finally, the output passes the post-
processing module and becomes the final output.

Additionally, we utilized an Subband Order Statistic Filters
(OSFs) based VAD system [24].This system includes a noise
reduction block that preceeds the VAD and uses OSFs to for-
mulate a robust decision rule. Notice the distinct distributions

in subband between speech and noise, this method significantly
improves the performance in low signal-noise ratio conditions.

2) Decoding: In our systems, we use a WFST-based
method for decoding based on Kaldi Toolkit. For the firstpass
decoding, we simply use the N-gram model as the decoding
language model. The decoding beam is set to 15.0 while the
beam used in lattice generation is 8.0. The LM weight is
chosen in integers from 8 to 12. Besides, a two-layer LSTM
language model is trained for lattice rescoring bidirectionally
[7].

3) System Fusion: After we obtain the recognition results
for each system, we adopt two fusion methods to generate
an output with reduced error rate. First, we adopt the lattice
combination method [12], which uses minimum Bayes risk
decoding to combine results under the same SAD system.
Then, we try to merge the results obtained in the previous step
with different SADs with the help of ROVER method [13].
Both methods are post-recognition processes which model the
output generated by multiple ASR systems as independent
knowledge sources that can be combined and used to generate
an output with reduced error rate.

4) Results Filtering: Finally we obtain the ASR results
from lattice, we filter the words lists by the corresponding
degree of confidence. The threshold is set to 0.3, which means
the decoding results with confidence value below 0.3 would be
abandoned. The operation is effective to reduce the insertion
error.

F. Results on DEV

We test our systems with the 10h development set. The
results are showed in Tab.II scored by Word Error Rate (WER).
We show 4 single system results as well as their fusion
results of each language and scoring criteria. The two acoustic
model CNN-TDNN-F and CNN-TDNN-F-A are adopted and
compared. Besides, we also list the WER of RNNLM rescored
results and the augmented system results.

From Tab.II, we find that the augmented systems with
MUSAN degrade to some extent while the systems with
original data performs similarly. However, all the systems are
useful to the fusion system.

IV. CONSTRAINED-PLUS TRAINING CONDITION

The Constrained-plus Training condition follows the same
training data restrictions as Constrained Training, but addition-
ally allows publicly available and previously existing speech
pre-trained models. The self-supervised learning frameworks,
such as wav2vec2.0 [8], MockingJay [25], TERA [26], have
obtained processing progress in speech recognition. Since
there are 15 different languages in the challenge, a multilingual
pre-trained model is a better choice than a monolingual one.
We build our pipeline based on the wav2vec2.0 framework,
which works well by fine-tuning the pre-trained model when
the amount of labeled data is limited. The wav2vec2.0 model
is composed of a multi-layer convolutional feature encoder, a
context network which follows the Transformer architecture,
and a quantization module to discretize the output of the



TABLE II
THE RESULTS (WER) OF DEV UNDER CONSTRAINED TRAINING

CONDITION.

S1 and S2 employ the CNN-TDNN-F and CNN-TDNN-F-A respectively. S3
performs RNNLM rescoring based on the decoding results of S2. S4 is the
augmented system by MUSAN with CNN-TDNN-F or CNN-TDNN-F-A. The
lattice decoded from S1-S4 are fused by lattice combination, and the results
are marked as Fusion.

Language S1 S2 S3 S4 Fusion

Amharic CIS 37.3 37.7 38.5 40.9 35.3
Cantonese CIS 47.3 47.8 46.6 48.7 45.0
Farsi CIS 54.4 54.2 55.0 58.0 52.6
Georgian CIS 42.8 42.3 44.3 47.2 40.8
Guarani CIS 41.0 41.8 41.6 44.9 38.9
Javanese CIS 54.0 54.5 54.3 57.6 51.9
Kazakh CIS 46.4 47.9 46.4 52.9 44.2
Kazakh CSS 29.9 30.6 30.4 33.7 27.6
Kurmanji-kurdish CIS 66.1 66.3 65.6 70.5 63.8
Mongolian CIS 48.3 48.6 48.4 52.5 45.5
Pashto CIS 47.0 47.2 46.3 51.2 44.1
Somali CIS 55.9 56.6 56.4 59.7 53.8
Swahili CIS 34.4 34.8 34.5 37.9 32.2
Swahili CSS 27.5 28.0 29.8 29.3 26.4
Tagalog CIS 42.2 42.9 41.9 44.1 40.0
Tagalog CSS 33.4 33.3 30.9 34.1 28.5
Tamil CIS 62.0 62.9 62.9 65.4 60.2
Vietnamese CIS 47.4 47.0 46.4 50.3 44.2
Average 45.4 45.8 45.6 48.8 43.1

feature encoder to a finite set of speech representations via
product quantization [8].

We use the open-source pre-trained model XLSR-535 as
our baseline, which is a multilingual model trained with 56k
hours audio data in 53 different languages from 3 datasets
(Multilingual LibriSpeech [27], CommonVoice [28], Babel
[10]).

A. Fine-tuning methods

For the basic workflow of a language, we fine-tune the pre-
trained XLSR model with the labeled 10h data by adding a
linear classifier on top of the model to optimize the Connec-
tionist Temporal Classification (CTC) loss. The provided 10h
development set is used to validate during fine-tuning. For
the first 10k updates only the output classifier is trained, after
which the Transformer is also updated. The feature encoder is
not trained during fine-tuning.

We put character as the modeling unit for the languages with
romanized spelling, such as Tagalog, Swahili and Javanese
while the grapheme is utilized for the languages without
romanized spelling, such as Tamil, Pashto and Amharic. The
target tokens also include a word boundary token. For the case-
insensitive scoring datasets, we transfer all uppercase letters
into lowercase ones while keeping the letters unchanged for
the case-sensitive scoring datasets. Besides, we deal with the
transcripts text in two ways after removing all the speech as-
pects such as mispronunciations and non-speech aspects such
as coughs. One is keeping all the words in the transcription of
the speech while the other is filtering out the OOV words by

5https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr 53 56k.pt

the lexicon offered. According to our experiments, the former
way performs better.

Since the pre-trained model is multilingual, it has the
universality of multiple languages but lacks the speciality of
a specific language. We further train the pre-trained model
XLSR-53 with the target language unlabeled speech from the
Build dataset in Babel program of the corresponding language
being processed, though XLSR-53 has already employed the
same part data during training for 8 in 12 Babel languages.
At this phase, the whole model is optimized by contrastive
loss augmented by a codebook diversity loss. Next, we fine-
tune the obtained model with the labeled 10h data for the
language. The 2-stage fine-tuning method is helpful to make
the pre-trained model adapt to a single language efficiently.

B. Datasets

For the languages in Babel program, we use the speech
data from the Build set of the corresponding language in
an unsupervised way, which is described in Sec.IV-A. The
detailed information about the speech data usage is showed in
Tab.III.

TABLE III
THE EXTRA USED SPEECH DATA IN IARPA BABEL PROGRAM.

Language Version Duration

Amharic IARPA-babel307b-v1.0b-build 43h
Cantonese IARPA-babel101b-v0.4c-build 141h
Guarani IARPA-babel305b-v1.0c-build 42h
Javanese IARPA-babel402b-v1.0b-build 45h
Kazakh IARPA-babel302b-v1.0a-build 39h
Kurmanji IARPA-babel205b-v1.0a-build 41h
Mongolian IARPA-babel401b-v2.0b-build 46h
Pashto IARPA-babel104b-v0.bY-build 78h
Swahili IARPA-babel202b-v1.0d-build 44h
Tagalog IARPA-babel106-v0.2g-build 85h
Tamil IARPA-babel204b-v1.1b-build 69h
Vietnamese IARPA-babel107b-v0.7-build 88h

C. Experiment settings

When continuing the pre-training stage of XLSR-53, there
is no layer drop. We optimize with Adam, warming up the
learning rate for the first 32000 updates to a peak of 1×10−3

and then linearly decaying it. The maximum number of
updates is 100k. The Gumbel softmax temperature is annealed
from 2 to a minimum of 0.1 by a factor of 0.999995 at every
update. The model is trained on a single GPU within 1.2M
tokens a batch.

During fine-tuning, the learning rate is set to 1×10−3 as
well. We optimize with Adam and a tri-state rate schedule
where the learning rate is warmed up for the first 10% of
updates, held constant for the next 40% and then linearly
decayed for the remainder. We fine-tune on a single GPU with
a batch of 1.28M samples.

D. Decoding, Alignment and Fusion

We perform SAD as well to infer efficiently and accurately.
The two methods of SAD mentioned in Sec.III-E1 are adopted.



After fine-tuning, we decode with a 4-gram language model
trained with the same text data in Sec.III-C. The LM weight
is set to 1 with beam 500 for EVAL set and beam 5 for DEV
set.

To obtain results with Conversation Time Mark (CTM)
formats, we perform force-alignment with the GMM model
trained before. Since the inference results are in one-best
format, we set the confidence scores in CTM to 1.0 by default.

Finally, we fuse all the results from wav2vec2.0 framework
as well as some results from systems in the Constrained
Training Condition by ROVER. We find that results from
different SAD methods are complementary to each other as
the fusion performance improves a lot.

TABLE IV
THE RESULTS (WER) OF DEV DECODING WITH 4-GRAM LM OF BEAM 5

UNDER CONSTRAINED-PLUS TRAINING CONDITION.

FT is to fine-tune the XLSR model directly while FT2 continues training
the XLSR model first, which is introduced as a 2-stage fine-tuning way above.
FT k means the texts used during fine-tuning keep all the words.

Language FT FT2 FT k

Amharic CIS 44.0 40.8 38.6
Guarani CIS 46.2 42.5 41.3
Javanese CIS 53.6 51.0 49.8
Kurmanji-kurdish CIS 62.5 60.1 59.5
Mongolian CIS 47.9 44.7 43.9
Pashto CIS 45.2 41.8 37.9
Somali CIS 53.9 - 56.3
Tamil CIS 64.3 61.8 60.0
Vietnamese CIS 40.2 35.9 36.6
Swahili CIS 40.5 36.8 34.6
Swahili CSS 48.6 45.4 38.1
Tagalog CIS 45.0 41.5 39.5
Tagalog CSS 43.6 42.1 34.3
Georgian CIS 44.7 - 46.6
Kazakh CIS 46.5 43.9 42.1
Kazakh CSS 50.9 48.8 38.3
Farsi CIS 46.3 - 47.2
Average-babel 48.5 45.5 42.5
Average-all 48.5 - 43.8

V. RESULTS

Our systems’ performances of the 15 languages, 3 of which
have extra case-sensitive scoring setting, under constrained
training condition on the evaluation set are showed in Tab.V,
which are released by NIST OpenASR scoring server. The
submissions for constrained-plus training condition are dis-
played in Tab.VI. For each language, the submissions are
composed of single systems and fusion systems which shows
better performance.

VI. HARDWARE AND TIME DESCRIPTION

The basic hardware information for our systems is showed
in Tab.VII. As for the required time, for each language under
Constrained Training Condition, the elapsed wall clock time
is approximately 3 hours for a single whole system, which
can be divided into 3 main stages, 40 minutes for GMM
training, 2 hours for acoustic model training and 20 minutes
for decoding approximately. GPU resources are only used for

TABLE V
THE THUEE SUBMISSIONS ON EVAL SET UNDER CONSTRAINED

TRAINING CONDITION

The submission names omits the same prefix
”2020 OPENASR21 evaluation SYS-00949 THUEE”

Language submission WER

Amharic CIS
20211108-101321-8653 0.452
20211110-044759-3791 0.421
20211111-065214-0660 0.421

Cantonese CIS
20211108-020056-0415 0.453
20211109-041913-9441 0.449

Farsi CIS

20211109-020602-0166 0.822
20211110-025256-5524 0.831
20211110-212044-0942 0.828
20211111-064847-0115 0.814

Georgian CIS
20211109-021904-2667 0.482
20211109-212733-7484 0.530
20211110-024422-4784 0.465

Guarani CIS
20211108-082805-1460 0.465
20211109-214009-0433 0.490
20211110-020249-1919 0.442

Javanese CIS

20211108-081932-5133 0.535
20211109-222017-8097 0.521
20211110-015141-9145 0.521
20211111-044515-7646 0.520

Kazakh CIS

20211107-032129-6062 0.575
20211108-103346-8794 0.578
20211110-023608-1770 0.618
20211110-031010-6373 0.548
20211111-065245-0539 0.545

Kazakh CSS
20211107-033318-3528 0.528
20211109-223844-7195 0.498

Kurmanji-Kurdish CIS
20211106-042417-1949 0.683
20211108-213848-0585 0.659
20211111-065333-1070 0.664

Mongolian CIS
20211106-071158-5819 0.495
20211107-013341-6114 0.532
20211109-100710-9428 0.453

Pashto CIS
20211106-072931-6612 0.491
20211108-050918-4994 0.477
20211111-014431-6892 0.463

Somali CIS
20211106-033236-6055 0.618
20211108-224115-0949 0.580

Swahili CIS

20211108-091441-7648 0.380
20211110-051655-7106 0.352
20211110-210503-0470 0.379
20211111-064741-1269 0.353

Swahili CSS
20211108-092246-4903 0.464
20211110-054839-9396 0.437

Tagalog CIS

20211106-043355-7435 0.439
20211108-035017-3710 0.423
20211109-014953-5353 0.425
20211109-225246-2840 0.417

Tagalog CSS
20211106-220034-4920 0.518
20211108-225632-7708 0.497
220211110-010301-1583 0.490

Tamil CIS

20211106-080915-0407 0.661
20211108-234517-2131 0.645
20211110-223148-0093 0.654
20211111-065114-0877 0.641

Vietnamese CIS

20211106-073607-7490 0.481
20211109-013607-9726 0.453
20211110-093507-3276 0.452
20211111-065443-3885 0.445



TABLE VI
THE THUEE SUBMISSIONS ON EVAL SET UNDER CONSTRAINED-PLUS

TRAINING CONDITION

The submission names omits the same prefix
”OpenSAT-2020 OPENASR21 evaluation SYS-00950 THUEE”

Language submission WER

Amharic CIS
20211106-123024-2288 0.405
20211109-194005-8482 0.398
20211111-031217-0567 0.373

Farsi CIS
20211106-104429-3292 0.639
20211106-115828-2861 0.668
20211111-030212-7077 0.626

Georgian CIS

20211106-110246-9435 0.458
20211106-113351-9522 0.456
20211110-063036-8789 0.404
20211110-065510-1662 0.408

Guarani CIS
20211106-223450-2650 0.443
20211109-044003-1945 0.424
20211111-044346-2284 0.406

Javanese CIS
20211106-001324-3009 0.512
20211106-005520-2569 0.504
20211109-084957-3105 0.480

Kazakh CIS
20211106-114739-6624 0.488
20211110-042800-2133 0.483
20211110-044234-4422 0.429

Kazakh CSS
20211106-102648-2444 0.533
20211111-051458-8323 0.570
20211111-053414-5171 0.499

Kurmanji-Kurdish CIS 20211106-225210-2239 0.615

Mongolian CIS
20211106-224314-6667 0.457
20211109-091339-6520 0.431
20211110-230022-8297 0.411

Pashto CIS
20211107-001333-0470 0.440
20211109-195924-5514 0.448
20211109-224318-6051 0.414

Somali CIS
20211107-000323-5918 0.584
20211109-201205-7821 0.547
20211111-062415-7045 0.533

Swahili CIS
20211107-014317-0376 0.359
20211110-025628-2966 0.333
20211110-061439-1015 0.315

Swahili CSS
20211106-230633-0618 0.439
20211110-005616-8405 0.458
20211111-060743-9406 0.446

Tagalog CIS
20211106-112542-3907 0.422
20211110-002419-8468 0.399
20211111-015719-9038 0.377

Tagalog CSS
20211106-100141-4759 0.464
20211111-060255-3305 0.514

Tamil CIS
20211107-005913-3307 0.616
20211109-204114-6520 0.613
20211111-064123-8424 0.596

Vietnamese CIS 20211107-011444-8969 0.373

TABLE VII
HARDWARE DESCRIPTION

OS Ubuntu 20.04.1 LTS 64-bit
CPU num 2

CPU description
40,Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
80,Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz

GPU num 10
GPU description GeForce RTX 3090 24GB
RAM per CPU 512GB
Disk storage About 1TB

NN acoustic model training. The corresponding total CPU
time is about 20 hours since the number of threads is usually
set to 16, and the total GPU time is 2 hours or so. For the
Constrained-plus Training Condition, the elapsed wall clock
time is approximately 8 hours, which is mainly spent in fine-
tuning pre-trained model with one GPU. The inference time
is about 15 minutes with a single job for a language.
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