

Mask Inspection Technology for 65nm (hp) node and beyond

Toru Tojo^a, Ryoich Hirano ^{b, e}, Hiromu Inouec^c, Shinichi Imaic^c, Nobuyuki Yoshioka^d, Katsumi Ohirad^d, Dong-Hoon Chungd^d and Tsuneo Terasawae^e

^a General Engineering & Quality Assurance Division, Topcon Corporation
^b Corporate Research & Development Center, Toshiba Corporation
^c Corporate Manufacturing Engineering Center, Toshiba Corporation
^d Semiconductor Leading Edge Technologies, Inc. (Selete)
^eMIRAI Project

March, 16, 2005

Selete

Contents

- 1. Background
- 2. Mask inspection system using 198.5nm wavelength
- 3. Possibility of transmitted light and reflected light concurrent inspection logistics (TREFOIL)
- 4. Die-to-wafer image inspection
 - . Summary

2 IRAI

March, 16, 2005

Selete

History of wavelength gap between inspection and lithography

Comparison of defect pattern fidelity for different inspection wavelength λ

- 1. Background
- 2. Mask inspection system using 198.5nm wavelength
- 3. Possibility of transmitted light and reflected light concurrent inspection logistics (TREFOIL)
- 4. Die-to-wafer image inspection
 - Summary

5 IRAI

March, 16, 2005

Selete

IRAI

Overview of advanced mask inspection optical system (AMOS)

March, 16, 2005

Selete

Optical block diagram of AMOS

IRAI

198.5nm wavelength mask inspection optics of AMOS

March, 16, 2005

Selete

29nm length defect of detection by D-to-D inspection 15% ArF-HT PSM with 420nm wire, 70nm pixel, 400M pixel/s

Magnified defect pattern

Upper left: Top-down view of simulation area Upper right: 3D image of defect signal Lower right/left: X and Y side view of defect signal

March, 16, 2005

Selete

22nm corner defect detection by D-to-D inspection 15% ArF-HT PSM with 420nm wire, 70nm pixel, 400M pixel/s

9sum Max = 32938 (153.5

Magnified defect pattern

Upper left: Top-down view of simulation area Upper right: 3D image of defect signal Lower right/left: X and Y side view of defect signal

Die-to-die inspection sensitivity of 15% ArF-HT PSM with 420nm wire pattern, 70nm pixel, 400M pixel/s

		D	C	D	E	F	G	Н	Ι	J	K	L	М	N	0	Р	Q
No		0-				Ľ	▦						1	1			100001
1							16	11	12	24		22					
2							35	23	29	36	27	27					
3			12	12	11		51	38	42	54	40	48		00	10		
4			27	27	11		62	58	42	66	56	54	23	23	12		
5			20	31	11	11	80	75	59	87	67	66	20	23	20	8	
6			36	40	25	22	88	8/	83	84	/9	88	27	23	36	27	
1			44	44	42	40	113	100	95	113	91	101	40	40	40	31	
8			64	60	62	40	125	11/	111	125	104	11/	60	44	60	56	2
9		<i>n</i>	/9	0/	05	59	134	133	119	138	115	131	/5	50	/1	0/	
10			91	90	18	/3	101	149	131	149	130	144	100	0/	90	/5	ž
11	10		123	123	101	110	100	100	149	163	14/	154	111	100	108	95	Q.
12	40		127	135	104	110	1/0	183	170	1/9	1 28	108	12/	100	115	117	č.
13	100	10	147	139	132	110	194	193	1/9	190	1/3	206	159	142	150	147	-
14	100	40	103	107	140	150	200	214	100	204	107	200	100	140	107	100	
10	147	154	10/	1/3	100	107	222	232	202	221	200	207	191	1/3	10/	103	č.
17	171	206	190	191	100	101	242	240	210	200	210	227	200	210	202	210	
10	102	200	222	242	190	212	204	209	229	240	250	250	210	210	202	210	
10	210	200	251	242	200	213	200	203	200	202	250	200	250	258	227	250	
20	227	285	266	230	242	263	200	338	258	292	230	286	258	230	266	230	
20	LLI	200	200	201	201	200	LUT	000	200	LUL	201	200	200	201	200	6/1	

Standard algorithm (transmitted light)

CD algorithm (transmitted light)

Standard algorithm (reflected light)

March, 16, 2005

Selete

- 1. Background
- 2. Mask inspection system using 198.5nm wavelength
- 3. Possibility of transmitted light and reflected light concurrent inspection logistics (TREFOIL)
- 4. Die-to-wafer image inspection
 - Summary

12 IRAI

March, 16, 2005

Selete

IRAI

TREFOIL

TREFOIL: Transmitted light and REFlected light cOncurrent Inspection Logistics

Selete

An example of TREND optics:

Reflected light optics using spatially divided focal plane method

- 1. Background
- 2. Mask inspection system using 198.5nm wavelength
- 3. Possibility of transmitted light and reflected light concurrent inspection logistics (TREFOIL)
- 4. Die-to-wafer image inspection
 - Summary

March, 16, 2005

Selete

Concept of Die-to-wafer image inspection and this dataflow

Verification of Die-to-wafer image inspection method

Wafer-like image comparison of direct calculation with two-step calculation

19

CD variation of wafer image for binary OPC mask (assist bar) when intensity level is set at 0.41

- 1. Background
- 2. Mask inspection system using 198.5nm wavelength
- 3. Possibility of transmitted light and reflected light concurrent inspection logistics (TREFOIL)
- 4. Die-to-wafer image inspection
 - Summary

March, 16, 2005

Selete

Summary

- 1) Wavelength consistency between exposure system and mask inspection system is strongly required so as to obtain high defect detection sensitivity.
- 2) A novel high-resolution mask inspection platform using 198.5nm wavelength has been developed for 65nm node and beyond. The initial state D-to-D/D-to-DB inspection performances of 20-60nm defect sensitivity are certified.
- 3) For 45nm node inspection, the possibility of transmitted light and reflected light concurrent inspection is shown. A novel TREND optics is demonstrated.
- 4) The D-to-WI inspection method using measured mask pattern images is presented. Although accuracy of assumption and applicable limits should be investigated, this method is considered to be effective for industrial use.

A part of this work was supported by NEDO

March, 16, 2005

Selete

Thank you for your attention

March, 16, 2005

Selete

