Development of Standards Education Modules for Additive Manufacturing

Hannah Budinoff, Ph.D

Assistant Professor
Department of Systems
and Industrial Engineering

Andrew Wessman, Ph.D.

Assistant Professor Department of Materials Science and Engineering

Cholik Chan, Ph.D.

Professor
Department of Aerospace
and Mechanical Engineering

How can we improve the design and production of parts manufactured using additive manufacturing?

3D Printing + COVID

Metal AM applications

About us

Name:	Hannah Budinoff	Andrew Wessman	Cholik Chan
Background:	Department: Systems & Industrial Engineering Research: Engineering design; makerspaces Industry: Honeywell Aerospace Teaching: Ugrad/grad Design for AM course	Department: Materials Science & Engineering Research: Metallurgy; high-temp alloys Industry: GE Additive Teaching: Ugrad/grad Metal AM course	Department: Aerospace and Mechanical Engineering Research: Heat transfer; Energy storage Industry collaborators: Raytheon, Air Force Research Laboratory Teaching: Ugrad/grad Intro to AM course

Our overarching goal:

To prepare engineers who can utilize technical standards to guide their use of additive manufacturing technologies

Our 5 specific objectives

01	Develop 4 e-learning modules with a total of 36 hours of content
02	Deploy each of the developed modules in one or more courses at UArizona
03	Improve students' ability to identify, locate, evaluate, and use standards for technical problems related to AM
04	Distribute e-learning modules to other institutions of higher education with guidance for they can replicate our methods
05	Disseminate project results in a final summary paper to a wide audience

Institutional resources we're leveraging

Office of Instruction and Assessment

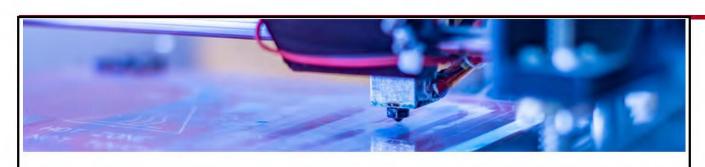
Instructional Design Team for Digital Learning

Instructional Design

From the creation of your objectives to the refinement of a well-designed experience, our Instructional Design and Continuous Improvement teams are here to help you create an online course that is learner-driven, innovative and academically rigorous.

Learn About Instructional Design▼

Multimedia Production


Our team of creative professionals collaborate with instructors to create clear, cohesive and engaging student-centered content that ranges from studio sessions and on-location video production to audio recording and illustrations.

Learn About Multimedia Production ₹

Topics in our e-learning modules

Learning module focus	Topics and relevant standards	
Module 1: Introduction to engineering standards	Topics : Standards development organizations; standard development process; How to identify and access standards; ASTM F42 committee	
Module 2 : Use of standards in the design-for-additive-manufacturing process	Topics : AM terminology; Design and data formats; AM test samples; GD&T AM applications Relevant standards : ISO/ASTM52900-15, ISO/ASTM 52921-13; ISO 17296-4; ISO/ASTM 52915-13; ASME Y14.5; ISO/ASTM 52942-20	
Module 3: Additive manufacturing process development	Topics : AM processes; AM feedstocks; Preparing and testing test specimens Relevant standards : F2971-13; ISO/ASTM52904-19; F3049-14	
Module 4 : Testing and evaluation for additively manufactured parts	Topics : Mechanical properties; Requirements for purchased AM Parts Relevant standards : ISO/ASTM52901-16; F3302-18; F3122-14; ASTM A370 - 20	

Our learning module format

Introduction

Module Introduction

In this module, you will learn about t explore the range of technical standa standards.

Learning Outcomes

At the end of this module, you will b

Activity List

- 1. Watch and Do: Follow along with the interactive tutorial Standards: How Do I Find & Use Them? (15 minutes)
- 2. Read: Development Process for Technical Standards (5 minutes)
- 3. Read and Reflect: Case Study (20 minutes)
- 4. Do: Complete Module 1 reflection (20 minutes)
- 5. **Bonus Resource:** To learn more, check out the Additional Resources at the end of the module

Scope of 2-year project

Modules 4 online learning modules Courses 3 courses across 3 departments at UArizona People I 50 students impacted in 2 yrs

Early results are promising

Improvements in % of students' who feel confident in identifying and using standards from pre-test to post-test

- I feel that I can **define** what a technical standard is (Pre: 37% Post: 77%)
- I feel that I can **locate** technical standards in online databases (Pre: 33% Post: 73%)
- I feel that I can determine what type of technical standard to use as I conduct engineering work (Pre: 36% Post: 59%)
- I feel confident that I can utilize technical standards as I conduct engineering work (Pre: 44% Post: 68%)

Comments give us ideas for improvement

"The best activities were the interactive videos and quizzes."

- "Even though the material is necessary and every engineer will use standards, it is a bit dry to dive into."
- "Honestly, I like short readings (1-8 pages), after that it starts getting harder to retain the information"

 " I liked the case studies from Monday the most since it was a real-world problem and it had me thinking about what standards could be applied to solve it- I looked at the COVID mask one."

Spreading the word

- 10 page summary paper in Y2
- Feedback from industry at TMS Conference (Wessman)
- Share with engineering educators more broadly at annual conference for American Society for Engineering Education 2023 (Budinoff)
- Local dissemination among design faculty, COE, engineering librarian

Thanks!

Suggestions? Questions?