Characterization of 2D Materials : Challenges and Opportunities

Robert M. Wallace

Professor and Erik Jonsson Distinguished Chair

University of Texas at Dallas

<u>rmwallace@utdallas.edu</u>

https://sites.google.com/site/robertmwallace01/

This work was supported in part by:

- The Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) program sponsored by MARCO and DARPA.
- The SWAN Center, a SRC center sponsored by the Nanoelectronics Research Initiative and NIST.
- The US/Ireland R&D Partnership (UNITE) under the NSF award ECCS-1407765.

• Students

Acknowledgements

- Angie Azcatl, Hui Zhu, Chris Smyth, Qingxiao Wang, C. Zhang
- Research Scientists
 - Rafik Addou, Xiaoye Qin, Stephen McDonnell (Now @ UVa)
- Colleagues
 - K.J.Cho (DFT of interfaces), Chris Hinkle (MBE), Jiyoung Kim (Raman),
 - Moon Kim (HRTEM), Chad Young (Device Measurements)
- Collaborators
 - Joerg Appenzeller (Purdue), Paul Hurley (UCC/Tyndall), Ali Javey (UC Berkeley), Josh Robinson (Penn State)

© 2017 R.M.Wallace

Materials Challenges

- Tools and Methods
- ➤ TMDs
- Summary

Source: IBS

The Evolving Foundry Market: Chips built with 10-nanometer technology will come first. But International Business Strategies projects that Apple and others will be drawn to the next node in line: 7 nm.

IEEE Spectrum, 30 Dec 2016

Rethinking "Classical" Transistor design

- CMOS performance requirements point toward alternative...
 - Materials (e.g., $Si \rightarrow Ge \rightarrow III V \rightarrow 2D$?)
 - Structures (planar \rightarrow 3D Fin FET \rightarrow Gate all around)
 - Devices (MOSFET \rightarrow TFET)

Fig. 5. Switching energy vs. delay of a 32-bit adder.

Beyond CMOS – Some Recent References

Nikinov and Young, JxCDC (2015), Proc. IEEE (2013); Bernstein, et al., Proc. IEEE 98 (2010) 2169; Seabaugh and Zhang, Proc. IEEE 98 (2010) 2095; D. Jena, Proc. IEEE (2013)

2D Materials for Nanoelectronics

Boron Nitride

http://en.wikipedia.org/wiki/Boron_nitride

Trigonal prismatic (D_{3h})

 MoS_2

Wang et al. Nature Nanotech. 7 (2012) 699

B. Radisavljevic et al. Nature Nanotech. 6 (2011)

TMD Potential Attributes for "Beyond CMOS"

- Limited quantization effects for single layer channels
- Useful effective masses, bandgaps, and band offsets for transistors
- Full penetration of electric field through layer
- Anticipated dearth of defects like dangling bonds anticipated
- TMD Combinations + *d* orbitals anticipated to enable new functionalities

A long history on TMD research...

J. Appl. Physics 37 (1966) 1928

Table 1

Layered materials conference series titles with book chapters covering layered materials research from 1976–2000.

Physics and chemistry of materials with low-dimension structures Single Crystals of MoS₂ Several (Previously published under the series title: physics and chemistry of materials with layered structures) Molecular Layers Thick 1. R.M.A. Lieth (Ed.): Preparation and Crystal Growth of Materials with Layered Structures. 1977 ISBN 90-277-0638-7 R. F. FRINDT* 2. F. Levy (Ed.): Crystallography and Crystal Chemistry of Materials with Layered Structures 1976 Physics and Chemistry of Solids, Cavendish Laboratory, ISBN 90-277-0586-0 Cambridge, England 3. TJ. Wieting and M. Schluter (eds.): Electrons and Phonons in Layered Crystal Structures. 1979 (Received 24 March 1965; in final form 18 June 1965) ISBN 90-277-0897-5 4. P.A. Lee (Ed.): Optical and Electrical Properties. 1976 ISBN 90-277-0676-X Adv. Physics 18 (1969) 193-335 5. F. Hulliger: Structural Chemistry of Layer-Type Phases. Ed. by F. Levy. 1976 ISBN 90-277-0714-6 6. F. Levy (Ed.): Intercalated Layered Materials. 1979 The Transition Metal Dichalcogenides ISBN 90-277-0967-X Discussion and Interpretation of the Observed Optical, Electrical Physics and chemistry of materials with low-dimensional structures series a: layered structures 7. V. Grasso (Ed.): Electronic Structure and Electronic Transitions in Layered Materials. 1986 and Structural Properties ISBN 90-277-2102-5 8. K. Motizuki (ed.): Structural Phase Transitions in Layered Transition Metal Compounds. 1986 By J. A. WILSON and A. D. YOFFE ISBN 90-277-2171-8 9. L.J. de Jongh (ed.): Magnetic Properties of Layered Transition Metal Compounds. 1990 Cavendish Laboratory, Cambridge ISBN 0-7923-0238-9 10. E. Doni, R. Girlanda, G. Pastori Parravicini and A. Quattropani (eds.): Progress in Electron Properties of Solids. Festschrift in Honour of Franco Bassani. 1989 ISBN 0-7923-0337-7 11. C. Schlenker (Ed.): Low-Dimensional Electronic Properties of Molvbdenum Bronzes and Oxides, 1989 ISBN 0-7923-0085-8 12. Not published. 13. H. Aoki, M. Tsukada, M. Schluter and F. Levy (eds.): New Horizons in Low-Dimensional Electron Systems. A Festschrift in Honour of Professor H. Kamimura. 1992 ISBN 0-7923-1302-X 14. A. Aruchamy (Ed.): Photoelectrochemistry and Photovoltaics of Layered Semiconductors. 1992 ISBN 0-7923-1556-1 Prog. Surf. Sci. 29 (1988) 1-167 15. T. Butz (Ed.): Nuclear Spectroscopy on Charge Density Wave Systems, 1992 ISBN 0-7923-1779-3 16. G. Benedek (Ed.): Surface Properties of Layered Structures. 1992 INTERFACIAL PROPERTIES OF SEMICONDUCTING ISBN 0-7923-1961-3 17. W. Muller-Warmuth and R. Schollhom (eds.): Progress in Intercalation Research. 1994 TRANSITION METAL CHALCOGENIDES ISBN 0-7923-2357-2 18. L.J. de Jongh (Ed.): Physics and Chemistry of Metal Cluster Compounds. Model Systems for Small Metal Particles, 1994 ISBN 0-7923-2715-2 W. JAEGERMANN and H. TRIBUTSCH 19. E.Y. Andrei (Ed.); Two-Dimensional Electron Systems. On Helium and other Cryogenic Substrates, 1997 ISBN 0-7923-4738-2 20. A. Furrer: Neutron Scattering in Layered Copper-Oxide Superconductors. 1998 Hahn-Meitner-Institut, Bereich S ISBN 0-7923-5226-2 Glienicker Str. 100, D-1000 Berlin 39, Germany 21. R.B. Heimann, S.E. Evsyukov and L. Kavan (eds.): Carbyne and Carbynoid Structures. 1999 ISBN 0-7923-5323-4 22. F.W. Boswell and J.C. Bennett (eds.): Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. 1999 ISBN 0-7923-5604-7 23. W. Andreoni (Ed.): The Physics of Fullerene-Based and Fullerene-Related Materials. 2000 ISBN 0-7923-6234-9 24. H.P. Hughes and H.I. Stamberg (eds.): Electron Spectroscopies Applied to Low-Dimensional Structures. 2000

ISBN 0-7923-6526-7

© 2016 R.M.Wallace

Thin Solid Films 616, 482 (2016)

TMD Potential Attributes for "Beyond CMOS"

- Useful band structure for TFET heterostructure transistors
- Metal and semi-metal properties
- Applications in Nanoelectronics, Optoelectronics, Photovoltaics, and Photocatalysis

See also: C. Gong et al. APL 103 (5), 053513 (2013); APL 107 (2015) 139904

© 2016 R.M.Wallace

C. Zhang, et al., 2D Materials, 4, 015026 (2017)

Interfaces and defects

Steep slope switching: The Effect of Interface Traps

Fig. 26 Theoretical $I_{D^*}V_G$ curves for $D_{ij}=0$ and $D_{ij,min}=2.7 \times 10^{10}$ cm⁻²eV⁻¹.

At the surface of a hypothetical two dimensional crystal, the atoms cannot fulfill their bonding requirements and therefore have broken, or dangling, bonds. Some of the surface atoms bond with each other; the surface becomes reconstructed. The surface can have physisorbed and chemisorbed atoms.

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)

Subthreshold swing "SS": gate voltage required to change the I_D by one decade

$$SS = \frac{\partial V_g}{\partial \left(\log I_d\right)} = \frac{\partial V_g}{\partial \psi_s} \frac{\partial \psi_s}{\partial \left(\log I_d\right)} = \frac{\ln(10)kT}{q} \left[1 + \frac{C_{bulk} + C_{it}}{C_{ox}}\right] \approx \frac{60T(K)}{300} \left[1 + \frac{C_{bulk} + C_{it}}{C_{ox}}\right]$$

Body Carrier injection mechanism

© 2016 R.M.Wallace See e.g. Schroder (2009); Ionescu, et al. Nature 479 (2011) 329-337 9

Interfaces and defects

Steep slope switching: The Effect of Interface Traps

UT DALLAS

Fig. 26 Theoretical I_{D} - V_{G} curves for $D_{ir}=0$ and $D_{irmin}=2.7 \times 10^{10}$ cm⁻²eV⁻¹.

Subthreshold swing "SS": gate voltage required to change the I_D by one decade

$$SS = \frac{\partial V_g}{\partial \left(\log I_d\right)} = \frac{\partial V_g}{\partial \psi_s} \frac{\partial \psi_s}{\partial \left(\log I_d\right)} = \frac{\ln(10)kT}{q} \left[1 + \frac{C_{bulk} + C_{it}}{C_{ox}}\right] \approx \frac{60T(K)}{300} \left[1 + \frac{C_{bulk} + C_{it}}{C_{ox}}\right]$$

Body Carrier injection mechanism

© 2016 R.M.Wallace See e.g. Schroder (2009); Ionescu, et al. Nature 479 (2011) 329-337 10

Recall the Si/SiO₂ interface...

11 UT D

Intrinsic Interface Defects

- Si(100) surface orientation provides the lowest theoretical dangling bond density (reactivity)
 - Density Si(100) = 6.8×10^{14} /cm²
 - Density Si(111) = 11.8×10^{14} /cm²
 - Density Si(110) = 9.6×10¹⁴ /cm²
- Dangling bonds ("P_b") provide a dominant defect population
 - As-grown interfaces can have densities $\geq 10^{12}/\text{cm}^2$
- Passivation of dangling bonds by hydrogen is effective
 - Density can be reduced to $\sim 5 \times 10^{10}$ /cm²
- Detection by sensitive characterization techniques
 - Surfaces: Thermal Desorption, FTIR, LEED, STS, PES, etc.
 - Devices: Spin Resonance, Capacitance-Voltage, Transistors, etc.
- Detection of defects in SiO₂ bonding as well
 - Strained bonds, dangling bonds (E'), peroxy bonding, hydroxyls, etc.
 - Depends on growth T, stoichiometry, charge injection, radiation, etc.
 - Can be located near interfaces (channel or gate) or within bulk

- Large areas synthesis
 - As large as possible or perhaps selective growth and within CMOS thermal constraints
 - "Back End of Line" \rightarrow T_{max} = 500°C
- High quality material
 - Uniform, continuous/coalesced
 - Low defect density
 - Low impurity concentrations
 - High mobility
- Contacts
 - Doping control
 - Low contact resistance
- Etching
 - Atomic layer etching control

- Materials Challenges
- Tools and Methods
- ➤ TMDs
- Summary

UT DALLAS Tools for *in-situ* studies of interfaces...

UHV Cluster System

UHV Surface Science System

In-situ deposition and analysis system at UT-Dallas

Annealing Module Custom UHV furnace • 100mm sample, T≤700° C, O₂, 1atm. **Sputter Module** PEALD Module • Ports for UV/O₃ treatments • UHV capable Gas flow control · Hot wall reactor • 4 RF magnetrons Custom UHV transfer system • Pressure/valve control • 100mm sample, T≤350° C Sample T≤1000° C (Pt) · Liquid, gas and solid sources Gas flow control Metal MBD Module • 4 pocket e-gun hearth • Sample heater (T≤1000° C) • Effusion cells **Analytical Module** • Atomic hydrogen source (H₂ cracker) Monochromatic Al-Kα XPS • RHEED • High Intensity UPS, AES, ISS MBE Module • LEED • 2 e-gun hearths (Group IV – Si, Ge) Substrate size flexible • P, As, Sb, B effusion cells • 1000° C sample heater • 100mm wafer, T≤1200° C, shutter • LN₂ sample cooling • QMS (x-beam), quartz microbalance Sample rotation, ARXPS RHEED

Example: ALD Tool Integration

Remote Plasma-Enhanced R200 ALD Reactor at UT-Dallas

© 2016 R.M.Wallace

UT DALLAS In-situ half cycle ALD reactions study by XPS

18 **UT**

UHV Surface Science System

- Variable Temperature STM/AFM
- Monochromatic XPS with Argus 128 channel detection
- Twin Anode X-ray Source
- UPS valence band studies
- Thermal Desorption Spectroscopy
- Low Energy Electron Diffraction
- Effusion/e-beam deposition

ECS Transactions, 64 (9) 109-116 (2014)

Sensitivity of Characterization Methods

© 2013 Evans Analytical Group

© 2016 R.M.Wallace

UT DALLAS

See: http://www.eag.com/mc/analytical-techniques.html

20

- Materials Challenges
- Methods
- TMDs
 - Impurities
- Summary

ICPMS of Extrinsic Impurities on MoS₂

1		MoS ₂ from Australian source ' a-MoS₂ '															2
Н										_							He
3 <0.1 <5.4E10	4 <0.1 <6.4E10				at. # ppbw at./cm ²							5 < 0.1 <1.6E10	6	7	8	9	10
Li	Be				Element	>5E10/cm2	>1E11/cm ²	>1E12/cm ²	Not			В	С	N	0	F	Ne
11 0.6 8.5E10	12 0.3 6.2E10											13 15.7 8.4E11	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
19 4.2 4.5E11	20 0.4 6.3E11	21	22 0.7 1.5E11	23 <0.1 <4.4E10	24 <0.1 <4.5E10	25 <0.1 <4.6E10	26 15.1 1.3E12	27 <0.1 <4.9E10	28 <0.1 <4.8E10	29 5 6.9E11	30 <0.1 <5.2E10	31 <0.1 <6.1E11	32 0.2 7.9E10	33 0.3 1.1E11	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38 <0.1 <6.3E10	39	40 2.8 6.1E11	41 0.4 1.7E11	42	43	44	45	46	47 7.9 1.3E12	48 54 4.9E+12	49 0.2 9.9E10	50 1.1 7.3E10	51 1032 3.7E13	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56 2 4.4E11		72	73 <0.1 <1.0E11	74 408 2.7E13	75 0.85 4.4E11	76	77	78	79 <0.1 <4.8E10	80	81	82 1252 3.2E12	51 20311 3.9E14	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87 Er	88 Po		104 Df	105 Db	106	107 Rb	108 He	109	110 DC	111 Pg	112	113	114	115	116	117	118
FI	Nd		N	00	SR	DII	ns	IVIL	DS	Νg	Cli	out	ri -	oup	LV	Ous	000
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*L	anthanide Seri	es	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Actinide Serie	s	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Vapor ICPMS utilized by commercial laboratory
- "Digestion" here entails only surface region impurities
- Element list mainly based on Si-industry relevant impurity species i.e. impurities that induce levels in the band gap

UT DALLAS

ICPMS of Extrinsic Impurities on MoS₂

1		Synthetic (VPT) MoS ₂ , 's-MoS₂ '															2
Н																	He
3 0.1 5.4E10	4 <0.1 <1.6E10				<i>at.</i> # ppbw at./cm ²							5 <0.1 <1.6E10	6	7	8	9	10
Li	Be				Element	>5E10/cm2	>1E11/cm ²	>1E12/cm ²	Not			В	С	N	0	F	Ne
11 0.5 5.5E10	12 0.3 5.0E10											13 2.1 2.2E11	14	15	16	17	18
Na	Mg		_									Al	Si	Р	S	Cl	Ar
19 0.5 4.3E13	20 1.0 1.8E11	21	22 0.5 1.3E11	23 <0.1 <4.4E10	24 <0.1 <4.5E10	25 <0.1 <4.6E10	26 7.4 8.3E11	27 <0.1 <4.9E10	28 <0.1 <4.8E10	29 0.5 1.4E10	30 0.1 5.5E10	31 0.1 6.1E11	32 0.1 5.6E10	33 6.1 8.8E11	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38 <1.7 <1.0E11	39	40 <0.1 <6.5E10	41 <0.1 <6.6E10	42	43	44	45	46	47 0.3 1.5E11	48 43.5 4.3E12	49 <0.1 <7.6E10	50 0.1 7.3E10	51 8.2 1.5E12	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56 1.3 4.3E11	•	72	73 <0.1 <1.0E11	74 98.2 1.0E13	75 <0.1 <1.0E11	76	77	78	79 0.1 1.1E11	80	81	82 15.2 3.2E12	51 451.1 3.1E13	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88		104	105 Dh	106	107 Dh	108	109	110	111	112	113	114	115	116	117	118
Fr	ка		RT	Ub	Sg	вn	HS	IVIt	Ds	кg	Ch	Out	FI	Oup	LV	Uus	Uuo
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*L	anthanide Seri	es	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Actinide Serie	s	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Impurity concentration easily exceed 5×10^{10} /cm².
- Many impurities have energy levels within the bandgap of silicon.
- Presence of ionized impurities is expected to have a high impact in carrier transport measurements

UT DALLAS

UT DALLAS XPS of Extrinsic Impurities on MoS₂

As expected, many below the limit of detection!

- Impurity concentration easily exceed 5×10^{10} /cm².
- Sensitivity of the characterization method is essential
- Incorrect to state "No Impurities"...

MoS₂: Impurity Effect Estimate

• Theory \rightarrow Impurities must be kept well below 10¹²/cm²

FIG. 7. The room-temperature net electron mobilities in SL MoS_2 , considering all kinds of scattering mechanisms as a function of (a) N_I with fixed n_s at 10^{13} cm⁻²; (b) and (c) n_s with N_I fixing at 10^{11} and 10^{13} cm⁻², respectively. The numbers on the curves show the average dielectric constant of the surrounding dielectrics. Dashed lines show the fitted electron mobilities.

UT DALLAS

Ma and Jena, *Phys. Rev. X* 4 (2014) 011043

ICPMS Analysis of CVT WS₂

UT DALLAS

1																	2
Н																	He
3 <0.1	4 <0.1				<i>at. #</i> ppbw at./cm ²	<1×10 ¹⁰ /cm ²	>1×10 ¹⁰ /cm ²	Below detection limit	Not measured			5 <0.1	6	7	8	9	10
Li	Be				Element							<u>B</u>	<u>C</u>	<u>N</u>	<u>0</u>	<u>F</u>	Ne
<i>11</i> 0.19 4.0×10 ⁸	12 <0.1											13 <0.1	14	15	16	17	18
<u>Na</u>	Mg		-			_			-			<u>Al</u>	<u>Si</u>	<u>P</u>	<u>s</u>	<u>Cl</u>	Ar
<i>19</i> 0.22 6.2×10 ⁸	20 0.31 8.0×10 ⁸	21 <0.1	22 0.17 6.0×10 ⁸	23 <0.1	24 <0.1	25 <0.1	26 0.3 9.7×10 ⁸	27 <0.1	28 <0.1	29 <0.1	30 <0.1	31 <0.1	32 <0.1	33 <0.1	34 <0.1	35	36
<u>K</u>	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	<u>V</u>	Cr	Mn	<u>Fe</u>	Со	<u>Ni</u>	<u>Cu</u>	Zn	Ga	Ge	As	<u>Se</u>	Br	Kr
37	38 <0.1	39	40 <0.1	<i>41</i> 0.11 7.0×10 ⁸	42 1.73 4.5×10 ⁹	43	44 <0.1	45	46	47 <0.1	48 <0.1	<i>49</i> <0.1	50 0.99 3.6×10 ⁹	51 <0.1	52 10.79 1.8×10 ¹⁰	53	54
Rb	<u>Sr</u>	Y	Zr	<u>Nb</u>	Mo	<u>Tc</u>	Ru	<u>Rh</u>	<u>Pd</u>	Ag	<u>Cd</u>	In	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	<u>I</u>	<u>Xe</u>
55	56 <0.1	*	72	73 <0.1	74	75 0.42 2.7×10 ⁹	76	77	78	79 1.21 5.7×10 ⁹	80	81	82 <0.1	83 <0.1	84	85	86
<u>Cs</u>	<u>Ba</u>		<u>Hf</u>	<u>Ta</u>	W	<u>Re</u>	<u>Os</u>	Ir	<u>Pt</u>	<u>Au</u>	Hg	<u>TI</u>	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	<u>At</u>	Rn
87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
<u>Fr</u>	Ra		<u>Rf</u>	<u>Db</u>	<u>Sg</u>	<u>Bh</u>	<u>Hs</u>	<u>Mt</u>	<u>Ds</u>	Rg	<u>Cn</u>	Uut	<u>F1</u>	<u>Uup</u>	Lv	<u>Uus</u>	<u>Uuo</u>

- Impurity concentration kept below 5×10^{10} /cm².
- Better control of growth process and environment

ICPMS Analysis of CVT WSe₂

1																	2
<u>н</u> 3 <0.1	4 <0.1			<i>at. #</i> ppbw at./cm ²		<1×10/cm ²	>1×10/cm ²	Below detection limit	Not measured			5 <0.1	6	7	8	9	<u>He</u> 10
Li	Be			Element								<u>B</u>	<u>C</u>	<u>N</u>	<u>0</u>	<u>F</u>	<u>Ne</u>
<i>11</i> 0.5 7.6×10 ⁸	<i>12</i> 0.18 4×10 ⁸											<i>13</i> 3.85 2.1×10 ⁹	14	15	16 <50.00	17	18
<u>Na</u>	Mg											Al	<u>Si</u>	<u>P</u>	<u>s</u>	<u>Cl</u>	Ar
<i>19</i> 0.69 1.3×10 ⁹	20 1.66 2.4×10 ⁹	21 <0.1	22 1.25 2.3×10 ⁹	23 <0.1	24 0.36	25	26 1.55	27	28 0.32	<i>29</i> 0.12	30	31	<i>32</i> 60 78	33	34	35	36
			2.3~10		1.1×10 ⁹	<0.1	2.9×10 ⁹	<0.1	1.1×10 ⁹	5.8×10 ⁸	<0.1	<0.1	4.0×10 ¹⁰	<0.1	51		
<u>K</u>	<u>Ca</u>	Sc	2.3×10 <u>Ti</u>	<u>V</u>	1.1×10 ⁹ <u>Cr</u>	<0.1 <u>Mn</u>	2.9×10 ⁹ <u>Fe</u>	<0.1 Co	1.1×10 ⁹	5.8×10 ⁸	<0.1 <u>Zn</u>	<0.1 <u>Ga</u>	4.0×10 ¹⁰	<0.1 <u>As</u>	<u>Se</u>	Br	Kr
<u>K</u> 37	<u>Ca</u> 38 <0.1	<u>Sc</u> 39	2.3×10 <u>Ti</u> 40 <0.1	<u>¥</u> 41 <0.1	1.1×10 ⁹ <u>Cr</u> 42 28.32 2.9×10 ¹⁰	<0.1 <u>Mn</u> 43	2.9×10 ⁹ <u>Fe</u> 44 <0.1	<0.1 Co 45	1.1×10 ⁹ <u>Ni</u> 46	5.8×10 ⁸ <u>Cu</u> 47 <0.1	<0.1 <u>Zn</u> 48 <0.1	<0.1 <u>Ga</u> 0.14 9.5×10 ⁸	4.0×10 ¹⁰ <u>Ge</u> 50 0.84 3.2×10 ⁹	<0.1 <u>As</u> 51 <0.1	<u>Se</u> 52 0.32 1.8×10 ⁹	<u>Br</u> 53	<u>Kr</u> 54
<u>K</u> 37 <u>Rb</u>	<u>Ca</u> 38 <0.1 <u>Sr</u>	<u>Sc</u> 39 <u>Y</u>	2.3×10 <u>Ti</u> 40 <0.1 <u>Zr</u>	<u>V</u> 41 <0.1 <u>Nb</u>	1.1×10 ⁹ <u>Cr</u> 42 28.32 2.9×10 ¹⁰ <u>Mo</u>	<0.1 <u>Mn</u> <u>43</u> <u>Tc</u>	2.9×10 ⁹ Fe 44 <0.1 <u>Ru</u>	<0.1 Co 45 <u>Rh</u>	1.1×10 ⁹ <u>Ni</u> 46 <u>Pd</u>	S.8×10 ⁸ Cu 47 <0.1 Ag	<0.1 <u>Zn</u> 48 <0.1 <u>Cd</u>	<0.1 <u>Ga</u> 0.14 9.5×10 ⁸ <u>In</u>	4.0×10 ¹⁰ <u>Ge</u> 50 0.84 3.2×10 ⁹ <u>Sn</u>	<0.1 <u>As</u> 51 <0.1 <u>Sb</u>	<u>Se</u> 52 0.32 1.8×10 ⁹ <u>Te</u>	<u>Br</u> 53 <u>I</u>	<u>Kr</u> 54 <u>Xe</u>
<u>K</u> 37 <u>Rb</u> 55	<u>Ca</u> 38 <0.1 <u>Sr</u> 56 <0.1	<u>Sc</u> 39 <u>Y</u> *	Z.3310 <u>Ti</u> 40 <0.1	<u>V</u> 41 <0.1 <u>Nb</u> 73 <0.1	1.1×10 ⁹ <u>Cr</u> 42 28.32 2.9×10 ¹⁰ <u>Mo</u> 74	<0.1 <u>Mn</u> <u>43</u> <u>Tc</u> 75 <0.1	2.9×10° <u>Fe</u> 44 <0.1 <u>Ru</u> 76	<0.1 Co 45 <u>Rh</u> 77	1.1×10 ⁹ <u>Ni</u> 46 <u>Pd</u> 78	5.8×10 ⁸ <u>Cu</u> 47 <0.1 <u>Ag</u> 79 0.26 2.1×10 ⁹	<0.1 Zn 48 <0.1 Cd 80	<0.1 <u>Ga</u> <u>49</u> 0.14 9.5×10 ⁸ <u>In</u> 81	4.0×10 ¹⁰ <u>Ge</u> 50 0.84 3.2×10 ⁹ <u>Sn</u> 82 <0.1	<0.1 <u>As</u> 51 <0.1 <u>Sb</u> 83 <0.1	<u>Se</u> <u>52</u> <u>0.32</u> <u>1.8×10⁹</u> <u>Te</u> <u>84</u>	<u>Br</u> 53 <u>1</u> 85	<u>Kr</u> 54 <u>Xe</u> 86
<u>K</u> 37 <u>Rb</u> 55 <u>Cs</u>	<u>Ca</u> 38 <0.1 <u>Sr</u> 56 <0.1 <u>Ba</u>	<u>Sc</u> 39 <u>Y</u> *	Z.3310 <u>Ti</u> 40 <0.1	<u>¥</u> 41 <0.1 <u>Nb</u> 73 <0.1 <u>Ta</u>	1.1×10 ⁹ <u>Cr</u> <u>42</u> 28.32 2.9×10 ¹⁰ <u>Mo</u> 74 <u>W</u>	<0.1 <u>Mn</u> <u>43</u> <u>Tc</u> 75 <0.1 <u>Re</u>	2.9×10° <u>Fe</u> 44 <0.1 <u>Ru</u> 76 <u>Os</u>	<0.1 Co 45 <u>Rh</u> 77 <u>Ir</u>	1.1×10° Ni 46 Pd 78 Pt	5.8×10 ⁸ <u>Cu</u> 47 <0.1 <u>Ag</u> 79 0.26 2.1×10 ⁹ <u>Au</u>	<0.1 Zn 48 <0.1 Cd 80 Hg	<0.1 <u>Ga</u> <u>49</u> 0.14 9.5×10 ⁸ <u>In</u> <u>81</u> <u>TI</u>	4.0×10 ¹⁰ <u>Ge</u> 50 0.84 3.2×10 ⁹ <u>Sn</u> 82 <0.1 <u>Pb</u>	<0.1 <u>As</u> 51 <0.1 <u>Sb</u> 83 <0.1 <u>Bi</u>	Se 52 0.32 1.8×10 ⁹ <u>Te</u> 84 <u>Po</u>	<u>Br</u> 53 <u>1</u> 85 <u>At</u>	<u>Kr</u> 54 <u>Xe</u> 86 <u>Rn</u>
<u>K</u> 37 <u>Rb</u> 55 <u>Cs</u> 87	<u>Ca</u> 38 <0.1 <u>Sr</u> 56 <0.1 <u>Ba</u> 88	<u>Sc</u> 39 <u>Y</u> *	Z.3310 Ti 40 <0.1	<u>Y</u> 41 <0.1 <u>Nb</u> 73 <0.1 <u>Ta</u> 105	1.1×10 ⁹ <u>Cr</u> 42 28.32 2.9×10 ¹⁰ <u>Mo</u> 74 <u>W</u> 106	<0.1 <u>Mn</u> <u>43</u> <u>Tc</u> 75 <0.1 <u>Re</u> 107	2.9×10° <u>Fe</u> 44 <0.1 <u>Ru</u> 76 <u>Os</u> 108	<0.1 Co 45 <u>Rh</u> 77 <u>Ir</u> 109	1.1×10 ⁹ Ni 46 <u>Pd</u> 78 <u>Pt</u> 110	5.8×10 ⁸ <u>Cu</u> 47 <0.1 <u>Ag</u> 79 0.26 2.1×10 ⁹ <u>Au</u> 111	<0.1 Zn 48 <0.1 <u>Cd</u> 80 <u>Hg</u> 112	<0.1 <u>Ga</u> <u>49</u> 0.14 9.5×10 ⁸ <u>In</u> 81 <u>T1</u> 113	4.0×10 ¹⁰ <u>Ge</u> 50 0.84 3.2×10 ⁹ <u>Sn</u> 82 <0.1 <u>Pb</u> 114	<0.1 <u>As</u> 51 <0.1 <u>Sb</u> 83 <0.1 <u>Bi</u> 115	<u>Se</u> <u>52</u> <u>0.32</u> <u>1.8×10⁹</u> <u>Te</u> <u>84</u> <u>Po</u> <u>116</u>	<u>Br</u> 53 <u>1</u> 85 <u>At</u> 117	<u>Kr</u> 54 <u>Xe</u> 86 <u>Rn</u> 118

- Impurity concentration kept below 5×10^{10} /cm².
- Better control of growth process and environment

© 2016 R.M.Wallace

ACS Applied Materials and Interfaces, 8 (39), 26400 (2016)

27

ICPMS Analysis of CVT WTe₂

TIT	DAL	T AS
		LAD

1																	2
H																	He
3 0.47 3.3×10 ⁸	4 <0.1			<i>at. #</i> ppbw at./cm ²		<1×10 ¹⁰ /cm ²	>1×10 ¹⁰ /cm ²	Below detection limit	Not measured			5 <0.1	6	7	8	9	10
Li	Be			Element								<u>B</u>	<u>C</u>	N	<u>0</u>	E	Ne
11 3.45 2.8×10 ⁹	<i>12</i> 0.54 8.3×10 ⁸											<i>13</i> 0.2 4.6×10 ⁸	14	15	16 <50.00	17	18
<u>Na</u>	Mg				-							<u>Al</u>	<u>Si</u>	<u>P</u>	<u>S</u>	<u>Cl</u>	Ar
<i>19</i> 0.68 1.3×10 ⁹	20 4.69 4.9×10 ⁹	21 <0.1	22 <0.1	23 0.15 5.8×10 ¹⁰	24 6.1 6.9×10 ⁹	25 0.18 6.9×10 ⁸	26 21.28 1.7×10 ¹⁰	27 2.78 4.5×10 ⁹	28 2.58 4.2×10 ⁹	29 5.42 7.3×10 ⁹	30 <0.1	31 0.11 5.8×10 ⁸	32 <0.1	33 <0.1	34 <0.1	35	36
<u>K</u>	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	<u>v</u>	Cr	Mn	<u>Fe</u>	Co	<u>Ni</u>	<u>Cu</u>	Zn	Ga	<u>Ge</u>	As	<u>Se</u>	Br	Kr
37	38 <0.1	39	40 <0.1	<i>41</i> 0.15 8.6×10 ⁸	42 1.73 3.7×10 ⁹	43	44 <0.1	45	46	47 0.37 1.7×10 ⁹	48 <0.1	49 <0.1	50 0.14 9.7×10 ⁸	51 <0.1	52	53	54
<u>Rb</u>	<u>Sr</u>	Y	Zr	Nb	Mo	<u>Tc</u>	<u>Ru</u>	Rh	<u>Pd</u>	Ag	<u>Cd</u>	In	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	Ī	<u>Xe</u>
55	56 4.55 1.1×10 ¹⁰	*	72	73 <0.1	74	75 1.31 5.8×10 ⁹	76	77	78	79 4.26 1.3×10 ¹⁰	80	81	82 12.38 2.8×10 ¹⁰	83 <0.1	84	85	86
<u>Cs</u>	Ba		Hf	Ta	W	<u>Re</u>	<u>Os</u>	<u>Ir</u>	<u>Pt</u>	Au	Hg	<u>TI</u>	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	At	Rn
87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
<u>Fr</u>	<u>Ra</u>		<u>Rf</u>	<u>Db</u>	Sg	<u>Bh</u>	<u>Hs</u>	<u>Mt</u>	<u>Ds</u>	Rg	<u>Cn</u>	<u>Uut</u>	<u>FI</u>	<u>Uup</u>	Lv	<u>Uus</u>	<u>Uuo</u>

- Impurity concentration kept below 5×10^{10} /cm².
- Better control of growth process and environment

Metrology Opportunities?

- Develop protocol for 2D materials impurity analysis
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Methods
- ➤ TMDs
 - Defects
- Summary

© 2016 R.M.Wallace

Exfoliated geological MoS₂

Reality!

• 100 nm × 100 nm

Pleasant to the "eye"!13 nm × 13 nm

McDonnell, et al. ACS Nano 8, 2880 (2014)

UT DALLAS More defect "Zoology" for Exfoliated MoS₂

Defects observed on exfoliated, geological MoS₂

- Defect density up to 8 %.
- Various imperfections: metallic defects, donor and acceptor atoms, S-vacancy, structural defects...
- Impact on electronic and physical properties?

32

Comparison of MoS₂ and WSe₂

Figure 1. Initial MoS₂ (a-d) and WSe₂ (e-h) characterization. (a and e) High-resolution STM showing the atomic structure, scale bar 1 nm, imaging conditions (a) 0.7 V, 1 nA, and (e) 1.5 V, 1.5 nA. (b and f) 60 nm \times 60 nm image showing that both surfaces are defective, scale bar 12 nm, imaging conditions (b) -0.3 V, 0.1 nA, and (f) 0.5 V, 1.3 nA. (c and g) STS spectra showing typical n- and p-type variability of MoS₂, and typically p-type behavior of WSe₂. (d and h) XPS of the initial surfaces showing the expected MoS₂ and WSe₂ chemical states.

- Defects evident at the atomic scale
- STS shows defect impact on doping

ACS Nano, 8, 6265 (2014)

Variations in Exfoliated WSe₂

Figure 2. Imaging of atomic size imperfections on WSe₂ (sample A). (a) STM image ($V_b = 1.5$ V, $I_t = 1.5$ nA) shows a single Se vacancy with the corresponding line profile. (b) STM image ($V_b = 1.5$ V, $I_t = 1.5$ nA) showing two types of point defects: single vacancy (noted as "V") and local depression (noted as "A") caused by the presence of an acceptor at this area. (c) STM image ($V_b = 1.5$ V, $I_t = 0.5$ nA) shows an atomic bright spot (noted as "D") induced by the presence of donor atom at the vicinity of the surface.

- Defects evident at the atomic scale
 - "V" type density: ~0.7 × 10¹²/cm²
 - "D" type density: ~1.7 × 10¹²/cm²
 - "A" type density: ~1.2 × 10¹²/cm²

Variations in Exfoliated WSe₂

Figure 3. dI/dV vs V spectra recorded on two different freshly exfoliated WSe₂ samples (A, B) showing different behaviors: (a) p-type conductivity, (b) band bending effect ($I_t \sim 0$ when $V_b = 0$), (c) defect state in the gap, and n-type conductivity. The STS in (a–c) was recorded on sample "A", and the STS in (d) was recorded on sample "B".

Electronic structure variation

• P-type

•

- N-type
- Gap states
- Tip/Band bending effects?

ACS Appl. Mat. Int. 8, 6265 (2014)

Variability of Contacts on bulk, exfoliated MoS₂

- Noticeable variations in the core-level spectra are observed across an MoS₂ sample
- Low binding energy shoulder on the Mo 3*d*
- Degree of variability is vendor material specific
- Highest quality vendor materials can still result in ~20% of the surface exhibiting regions with shoulder features

XPS variability

Correlating I-V measurements with STM, STS and XPS: MoS₂

- All the measurements are performed on the identical spot
- Reproducible regardless of the order of measurements

At ~1.25 mm far away:

- Correlation founded between defects and the level of variability
 - \rightarrow Regions with low defect density n-type MoS₂ (S:Mo = 1.8:1)
 - > Regions with high defect density p-type MoS_2 (S:Mo = 2.3:1)

McDonnell, et al. ACS Nano 8, 2880 (2014)

Metrology Opportunities?

- Develop protocol for 2D materials defect analysis and densities
- Establish correlations with electronic/photonic device response (D_{it}, lifetime, etc)

Materials Challenges

- Methods
- ➤ TMDs
 - Contacts
- Summary

Cr Contacts Deposited in HV vs. UHV

HV (Cleanroom) & UHV Comparison UHV I_D-V_D 10⁻⁵ = 0.2 V 10⁻⁶ Drain Current (-2.0 V 5000 -Gate Current 10⁻⁷ Drain Current (nA/μm) **10**⁻⁸ 4000 0.5 0 V Current (A) 10⁻⁹ 0.5 V **10**⁻¹⁰ 3000 1.0 V **10**⁻¹¹ 2000 **10**⁻¹² **10**⁻¹³ 1000 **10**⁻¹⁴ UHV Cleanroom **10**⁻¹⁵ -(Closed) (Open) 0 **10**⁻¹⁶ -7 -6 -5 -3 -2 -1 ٥ 1 0.0 0.5 1.0 1.5 2.0 Gate Voltage (V) Drain Voltage (V)

- Lower threshold voltage
- Increase in on/off ratio
- Reduction in contact resistance

UT DALLAS

Cr Contacts Deposited in HV vs. UHV

- Less dispersion
 over a large
 frequency range is
 due to lower series
 resistance
- Lack of "humps" in the depletion of UHV sample suggests a smaller number of interface traps

HV vs. UHV Contact Metal Deposition

 Comparison of cleanroom tool (HV) and UHV deposition ambient reveals significant differences in contact interfacial chemistry for MoS₂...

Ti/MoS₂: See ACS Applied Materials and Interfaces, 8 (12), 8289–8294 (2016)

© 2016 R.M.Wallace

C. Smyth, et al., J.Phys.Chem. C 120 (27), 14719 (2016)

43

MoS₂/Cr interface

- Deposition by cleanroom tool (HV)
 - CrO_x formation detected
 - Some CrS_x reaction products also detected
- UHV deposition ambient reveals
 - CrO_x formation below limit of detection
 - More CrS_x formation detected
- Interfacial chemistry very different depending upon deposition process ambient
- UHV ambient appears to correlate with improved device behavior

Contact Metal Interfacial Chemistry

- No reaction of Au with the MoS₂ substrate detected
- Oxygen species (HV) can partially mitigate the reaction with Ir

© 2016 R.M.Wallace

C. Smyth, et al., J.Phys.Chem. C 120 (27), 14719 (2016)

45 **UT**

Contact Metal Interfacial Chemistry

Comparison of contact interfaces from cleanroom (HV) vs. UHV deposition

- Both Cr and Sc react with the MoS₂ substrate
- Oxygen species (HV) can Partially mitigate the reaction

C. Smyth, et al., J.Phys.Chem. C 120 (27), 14719 (2016)

46 UT

HV vs. UHV Contact Metal Deposition

 Comparison of cleanroom tool (HV) and UHV deposition ambient reveals significant differences in contact interfacial chemistry for MoS₂...

Ti/MoS₂: See also ACS Applied Materials and Interfaces, 8 (12), 8289–8294 (2016)

Pop group recent work, Nanoletters (2016) http://dx.doi.org/10.1021/acs.nanolett.6b01309

Metrology Opportunities?

- Develop protocol for 2D materials contact characterization (physical and electrical)
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Methods
- ➤ TMDs
 - Functionalization
- Summary

High-k/2D Interfaces

Sample b

Sample a

Topography

Phase

Line Profile

Transition metal dichalcogenides (TMDs) based transistor has drawn significant attention because of the two dimensional structure and moderate bandgap value (1.8 – 1.2eV).

Figure 1 | Fabrication of single-gated and dual-gated MoS₂ devices. a, Optical image of the MoS₂ dual-gated device used in our measurements. The inset shows the single-gate version of the same device before ALD deposition of HO₂ and top-gate electrode fabrication. Scale bars, 5 µm. b, Cross-sectional views of devices based on single-layer MoS₂ in a single-gate (top) and dual-gate (bottom) configuration. Gold leads are used for the source, drain and voltage probes (V₁, V₂, V₃ and V₄). Voltage probes have been omitted from the drawing. The silicon substrate, covered with a 270-nm-thick SiO₂ layer was used as the back gate. The top-gate dielectric is a 30-nm-thick HfO₂ layer.

Radisavljevic and Kis, Nat. Mat. 12 (2013) 815

(x) nm | (x) nm AFM images of ALD HfO₂ on MoS₂ <u>without</u> surface functionalization (only residues!)

Sample c

Sample d

 Due to the relatively inert surface of sulfide-based TMDs, deposition of high-k dielectrics and surface functionalization on TMDs have been investigated.

S. McDonnell, et al., ACS Nano. 7 (2013) 10354; A. Azcatl, et al., Appl. Phys. Lett. 104 (2014) 11160; A.Azcatl, et al., 2D Materials 2 (2015) 014004; P.Zhao, et al., Microeletronic Eng. 147 (2015) 154

- Adiated PhinA

Sample e

Functionalization by UV-O₃ - Apparatus

Sample surface (facing down) is <3mm from lamp

UT DALLAS

UV-Lamp Power Supply

© 2016 R.M.Wallace

Cleaning up MoS₂...In-situ analysis

- C contamination reduced below detection limit
- S-O bonding formation: functionalization
- Mo-O bonding not detected

Improved uniformity for Al₂O₃

ALD: 200°C, TMA-H₂O ALD only $UV-O_3 + ALD$

A. Azcatl, et al., APL 104, 111601 (2014)

Top-gate MoS₂-based FETs: Electrical Characterization

In collaboration with Prof. Chadwin Young, Prof. Paul Hurley, and Mr. Peng Zhao

54

Metrology Opportunities?

- Develop protocol for 2D materials cleaning, controlled functionalization, characterization (physical and electrical)
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Methods
- ➤ TMDs
 - Doping
- Summary

Nitrogen doping of MoS₂ by remote N₂ plasma exposure

*In-situ XPS

Covalent Nitrogen doping of MoS₂

Nitrogen concentration controlled with N₂ plasma exposure time

UT DALLAS Nitrogen doping of MoS₂ by remote N₂ plasma exposure

Strain induced by Nitrogen doping in MoS₂

Azcatl, et al. Nanoletters 16 (9), 5437 (2016)

P-TYPE DOPING OF MOS₂ ENABLED BY NITROGEN DOPING

Electrical Characterization of Nitrogen Doped MoS₂ Without dopin Without doping $V_{DS} = 0.5 V$ $V_{pc} = 0.5 V$ 10µ 10µ 1µ 100n 1 layer 4 layers 100r 10n (unf/V) °I (Wull/A) ith dopi With doping 100p 10c 100 10f 20 -20 20 30 40 10 -30 -10 0 10 V_{RG} (V) V_{BG} (V) $V_{ps} = 0.5 V$ = 0.5 VWithout dopin Without doping 10 100n 100 ~14 layers 8 layers 10n 10 With doping 10. (unf/V) ⁴I With doping (Wurl/V) ⁰ 100 100 10f 40 -20 V_{BG} (V) V_{PC}(V)

Nitrogen doped MoS₂ Stoichiometry: N_{0.2}MoS_{0.8}

- ✓ Threshold voltage shift consistent with the claim of p-doping
- ✓ ON current levels are preserved

Device Structure

Channel Thickness Dependent Shift

✓ The donor doping level in Nitrogen doped MoS₂ was found to be in the range of ~ 2.5×10¹⁸ cm⁻³ - 1.5×10¹⁹ cm⁻³, having a reference doping level of 1.55×10¹⁸ cm⁻³ for undoped MoS₂

Metrology Opportunities?

- Develop protocol for 2D materials doping, characterization (physical and electrical)
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Methods
- ➤ TMDs
 - Etching
- Summary

Atomic Layer Etching of MoS₂ crystal surface

- Controlled oxidation of MoS₂ surface with a remote O₂ plasma
- Subsequently anneal O/MoS₂ to 500°C
- Removes layer of MoS₂ without underlying crystal disruption

© 2016 R.M.Wallace ACS Applied Materials and Interfaces, 8 (29), 19119 (2016)

UTD

62

- Controlled oxidation of MoS₂ surface with a remote O₂ plasma
- Subsequently anneal O/MoS₂ to 500°C
- Removes layer of MoS₂ without underlying crystal disruption

© 2016 R.M.Wallace ACS Applied Materials and Interfaces, 8 (29), 19119 (2016) 63

UТ

Metrology Opportunities?

- Develop protocol for 2D materials etch rate measurements, characterization (physical and electrical)
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Methods
- ➤ TMDs
 - New Phases
- Summary

Exfoliated MoTe₂: Rich in Surface Structures

Surface imperfections characterization of exfoliated CVT MoTe₂ crystals with STM, STS and STEM

(a) Atomic structure of 2H-MoTe₂. (b) plan-view and (c) cross-section view [11-20] of high resolution STEM images with HAADF Z-contrast mode.

(d, e) Large-scale STM images $(300 \times 300 \text{ nm}^2)$ of the same MoTe₂ surface region taken at a sample bias of -0.6 and +0.6 V, respectively, with a tunneling current of 0.6 nA. The step-edge in the figures is ~ 7 Å, corresponding to one layer of MoTe₂. (f) Line profiles crossing over the same region in d and e.

(g) A STM topographic image $(100 \times 100 \text{ nm}^2)$ shows the uniform circular shape of bumps/protrusions (bright spots). A 3D zoom-in image is shown in the inset of (g), indicate the average height of protrusions is 3 ± 0.5 Å depending on sample biases and tunneling current. (h) High-resolution STM image of the represented 2H-MoTe₂ lattice decorated with protrusions. The image (g, h) are taken with V_b = -0.6 V, 0.4 V, respectively, and I_t = 1.5 nA. (i) STS measurements from multiple surface regions.

- 2H, 1T' and T_d phases typically noted in the literature
- Variations in electronic nature of the surface
- Sensitivity of TEM vs. STM to defects

MoTe₂: Beyond expected phases

Annealing MoTe₂ results in Te loss \rightarrow phase changes \rightarrow **Nanowire** formation

Advanced Materials 1606264 (2017)

- Te/Mo ratio on the initial surface is around 2.12±0.02, indicating a homogeneous Te rich environment.
- Subsequent thermal treatment reveals that the Te/Mo ratio is extremely temperature sensitive.

MoTe₂: Beyond expected phases

Time sequence images of 2H-MoTe₂ (0001) show a fast growth of Mo_6Te_6 NWs along the 2H-MoTe₂ <11-20> directions

Time sequence images viewed along the 2H-MoTe₂ [11-20] direction (or Mo_6Te_6 [001])

Advanced Materials 1606264 (2017)

Metrology Opportunities?

- Develop database for 2D materials phases, characterization (physical and electrical)
- Establish correlations with electronic/photonic device response

- Materials Challenges
- Tools and Methods
- ≻ TMDs
- Summary

IEEE Spectrum

- □ 2D TMD Materials may offer the ultimate scaling: a monolayer transistor channel
- □ Steep slope TFETs with useful "on" currents are under research now
- □ Cleaning process residues essential for reproducible properties
- □ Functionalization without substrate disruption possible, enables efficient ALD
- □ Surfaces can be <u>far</u> from perfect: defect density can be significant (several %)
- Contacts can be <u>dominated</u> by defects and reactions deposition ambient details are important in interpretation of contact behavior
- □ Super acid wet passivation demonstrated on TM-sulfides, but not on selenides
- □ Substitutional *chalcogen* doping is possible
- □ Atomic layer etching routes are possible
- Impurities <u>on</u> geological and synthetic crystal surfaces can be substantial, progress has been made recently
- Large area, high quality (low defect/impurity) films needed for device progress

There appear to be MANY opportunities to establish metrology protocols, benchmarks and standards for the device community

UT DALLAS

Summary

- Relative to Si, TMDs exhibit relatively high intrinsic and extrinsic defects/impurities
 - Geological TMDs are far more inferior at this time.
 - Improvements in growth methods and purity have been noted
- Defects and interfacial chemistry, within the detection limit of in-situ surface analysis techniques, provide useful information to guide process development, tool/material requirements
 - Correlation to device behavior is possible and useful!
 - Opportunity to establish what constraints must be addressed
 - Details of process ambient are important!
- All researchers must be cognizant of the their materials
 properties when drawing conclusions
 - Physical characterization has limited sensitivity
 - Electrical characterization is very sensitive, but interpretation can be ambiguous

UT DALLAS

Thanks!

<u>rmwallace@utdallas.edu</u> https://sites.google.com/site/robertmwallace01/

© 2016 R.M.Wallace

