

Medium Voltage SiC R&D update

Jeffrey B. Casady, Ty McNutt, Dave Girder & John Palmour

Jeff.Casady@wolfspeed.com or 919.308.2280 (US)

April 2016

A CREE COMPANY

© 2015 Cree, Inc. All rights reserved.

NEXT GENERATION SIC MOSFETS – OVER 5 YEARS IN THE MARKET

WOLFSPEED NEXT-GEN SIC DMOS LOWERS SPECIFIC R_{DSON} **DRAMATICALLY**

Reference: J. Palmour, et al (ISPSD 2014)

New 900V SiC MOSFET released is 2.3mΩ·cm²

3

© 2015 Cree, Inc. All rights reserved

3.3kV, 45m Ω SiC MOSFET CHIP R_{DSON} vs T and I_{DS}

- 2.5X increase in R_{DSON} from 25°C to 150°C
- Positive temperature coefficient
- Devices can be readily paralleled

Reference: J. Casady, et al (ECCE 2015)

3.3kV, 45m Ω SiC MOSFET CHIP R_{DSON} vs V_{GS}

- At temperature, little change in R_{DSON} above V_{GS} =+14V
- At 1.8kV, 20A (1/2 rated current), E_T = **1.1mJ** (858 uH load)

Reference: J. Casady, et al (ECCE 2015)

3.3kV, $45m\Omega$ SiC MOSFET CHIP BODY DIODE

- SiC body diode can eliminate external anti-parallel SiC diode
- Elimination of external anti-parallel diode saves cost and space
- Third quadrant operation of MOSFET possible for additional savings

Reference: J. Casady, et al (ECCE 2015)

3.3kV/180A SiC HALF-BRIDGE EVALUATION MODULE

For Quick Evaluation

- Each switch position contains:
 - Four (4) 3.3kV SiC MOSFETs (~45A each) and
 - Four (4) 3.3kV anti-parallel SiC diodes (~45A each)
- 62mm module / No snubber used

7

3.3kV SWITCHING LOSS PERFORMANCE @ 25°C Double Pulse Test

Vlink = 2.2 kV, Rg_ext = 2.5 Ω

• At 2.2kV, 180A switching event, **45mJ** total switching energy

Reference: J. Casady, et al C. MOSFETs switching losses are 10-15x lower than 3.3kV Si IGBTs

250A/2.2kV SWITCHING EVENT WITH RG_EXT = 2.5 Ω

Reference: J. Casady, et al (ECCE 2015) Switching speed <150ns; minimal overvoltage (no snubber)

Improved Gen three 3.3kV, 40mΩ SiC MOSFET chip

IMPROVED GEN THREE 3.3kV/40m Ω SiC MOSFET

- 8.5 % Reduction in Die Size
- 13.6% Improvement in R_{DSON}

- Preliminary 3.3kV SiC MOSFET Design
- $R_{DS,ON}$ = 46.9 m Ω
- Die Area = 46.7 mm²

SIC XHP[™] STYLE MODULE - INDUSTRY STANDARD HOUSING

- Engineering Sample sales
- Up to 12 MOSFETs/ switch available
- Ultra-Fast Switching, Low Inductance (<20 nH V+ to V-)
- Companion gate driver
 - Desaturation protection, temperature sensing, programmable UVLO with hysteresis, galvanic signal isolation, & on-board isolated power supplies.

3.3 kV SiC HALF-BRIDGE POWER MODULE N-Channel MOSFET

FEATURES

- > High Voltage: V_{DS} = 3.3 kV, T_{J(max)} = 175 °C
- > AS9100:Rev. C-Certified Manufacturing,
- > Traceable Throughout Value Chain
- > Ultra-Fast Switching, Low Inductance
- > Enables High System Efficiency
- > "XHP" Style Half-Bridge Power Module

APPLICATIONS

- > Solid-State Transformers
- > Medium Voltage Drives
- > Solid-State Circuit Breakers
- > Smart Grid / Grid-Tie Distributed Generation
- > Energy Storage Systems

Power Module Absolute Maximum Ratings

Symbol	Parameter	Condition(s)	Value	Units
VDSS	Drain-Source Voltage		3300	V
VGSS	Gate-Source Voltage1		-8/+19	
ID	Continuous Drain Current	T _C = 25 °C, T _J = 175 °C		— A
		T _C = 125 °C, T _J = 175 °C		
PD	Maximum Power Dissipated	Tc = 25 °C, TJ = 175 °C	2586	W
T _{J(max)}	Maximum Junction Temperature		175	°C
Tstg	Storage Temperature Range		-55 to 175	

3.3 kV / 5.7 mΩ

Gen three 6.5kV, 100mΩ SiC MOSFET chip

$6.5kV, 100m\Omega$ SiC MOSFET

- Nominally a 30A SiC MOSFET
- $R_{DSONmax}$ at room temp ~100m Ω
- $R_{DSONmax}$ at 90 ° C ~171m Ω
 - all parameters subject to change without notice

© 2015 Cree, Inc. All rights reserved.

Improved Gen three 10kV, 350mΩ SiC MOSFET chip

Measured I-V Characteristics at 150°C of Enhanced Short Circuit Capability and Baseline Gen3 10 kV/350 mOhm SiC MOSFETs

16

• Very Small Difference in On-Resistance ($R_{DS,on}$) at 150 °C

Wolfspeed.

• Enhanced Short Circuit 10 kV SiC MOSFET has Higher Threshold Voltage

Short Circuit Simulation/Test of Gen 3 10 kV/350 mOhm SiC MOSFETs With Enhanced Short Circuit Capability

Short Circuit Voltage = 5000 V

- Demonstrated Gen3

 10 kV/350 mOhm SiC MOSFETs
 Capable of Sustaining
 Short Circuit Current
 For > 13 µsec at 5000V
- Measurement and Simulation Courtesy of Al Hefner at NIST

Conduction/Switching Measurements and Model of Enhanced Short Circuit Capability Gen3 10 kV/350 mOhm SiC MOSFETs

- Measurement and Model
 - **Courtesy of Al Hefner at NIST**

NIST

10kV Switching Measurements

- A. ¹⁄₂ Bridge Configured Measured Switching Energies and Waveforms
- **B.** Boost Configured Switching Energies

1/2 BRIDGE CONFIGURED MEASURED SWITCHING ENERGIES AND WAVEFORMS 20

© 2015 Cree, Inc. All rights reserved

Wolfspeed.

Boost Configured Switching Energies

- New R&D 10kV SiC MOSFETs > 40X lower switching losses than 6.5 kV Si IGBT in boost configuration
 - Peak switching voltage set by overshoot and cosmic ray FIT potentially much less de-rating in SiC vs Si

Reference: J. Casady, et al (PCIM 2015)

10 kV BODY DIODE STATIC CHARACTERISTICS

- 10 kV body diode is bipolar lower resistance than a 10 kV JBS diode at high temperatures
- Reverse conducting antiparallel JBS diode can be eliminated

10 kV BODY DIODE REVERSE RECOVERY

• 10 kV body diodes show low reverse recovery

Reference: J. Casady, et al (PCIM 2015)

Proprietary

© 2015 Cree, Inc. All rights reserved

PROTOTYPE GATE DRIVER WITH TARGET >100 kV/\mus CAPABILITY

Gate Driver output with custom totem pole. Max peak current >70 A

Non-Isolated DC/DC regulation Unregulated 10-30V to +20/-5V, or +15/-4V

Fiber-optic control signals, non-isolated side would be on a separate board in final implementation

HV unregulated Isolated (>10kV) Power Supply 20-30V input to 15-30V output

SUMMARY

- SiC MOSFETs released over 5 years ago
- Gen 3 SiC MOSFETs released beginning in 2015 at 900V;
- Gen 3 SiC MOSFETs engineering samples at 1.7kV, 3.3kV, 6.5kV and 10kV
- Modules available
 - Companion gate drivers/power supplies for all modules available
 - 1.7kV modules using Econodual[™] based design
 - 3.3-6.5 kV module
 - (Infineon XHP[™] standard footprint)
 - Internal design is customized to enable SiC high switching frequency operation with low loop inductance <20 nH
 - 10kV SiC MOSFET XHV-6 Power Module
 - Up to 240A, half-bridge topology

Leading the Pack.

© 2015 Cree, Inc. All rights reserved.