

EUROPEAN MEETING ON FIRE RETARDANT POLYMERIC MATERIALS 26.-28.6.2019 TURKU FINLAND

Reduced-Scale Test to Assess the Effect of Fire Barriers on the Combustion Behavior of Core Flammable Materials: an Upholstery–Material Case Study

Mauro Zammarano Fire Research Division, NIST, USA

Some of the data in this presentation hasn't been through the NIST review process and should be considered experimental / draft results.

Outline

• Fire Barriers as alternative to Chemical FRs

• **Cube Test**: reduced scale test to assess the effect of Fire Barriers

- Case Study: Upholstered Furniture
 - Full-scale test (Chair Mock-ups)
 - Bench-scale to Full-scale Correlation

Why Fire Barriers? Severe Restrictions on FRs in USA

FEDERAL LEVEL [CPSC Docket No. CPSC-2015-0022, Sept'17]

- **CPSC** <u>recommends</u> to refrain from intentionally adding nonpolymeric, organo-halogen FRs in:
- o children's products
- o upholstered furniture (UF) sold for use in residences
- o mattresses (and mattress pads)
- o plastic casings surrounding electronics.

STATE LEVEL:

• California State [Assembly Bill No 2998, Sep 29, 2018]

bans the use of FR based on halogenated, organo-phosphorous, organo-nitrogen, nanoscale chemical, chemicals of high concern in children's products, mattresses, or upholstered furniture

State of Maine first State <u>banning</u> <u>all flame retardants</u> in residential UF
<u>https://www.mainelegislature.org/legis/bills/bills_128th/billtexts/HP013801.asp</u>

Fire Barriers: a Physical Approach to Flame Retardancy

Two-fold mechanisms of action of Fire Barriers:

(1) Limiting generation rate of flammable pyrolyzate (Heat Transfer)

(2) Limiting or controlling the rate and location at which pyrolyzates are released and able to burn (**Mass Transfer**)

NIST Cube Test (ASTM WK65005)

What is it? Tool for the Cone Calorimeter to capture Mass Transfer and Heat Transfer phenomena through the top and <u>bottom</u> of the sample.

What is used for? Characterize the combustion behavior of a flammable core material in presence of fire barriers.

The sample is intended to be a representative cross-section of an item

Sample dimensions: 100 mm × 100 mm × product thickness

Substrate

engineering

Case Study: Upholstered Furniture (UF)

Barrier Materials

Materials compliant with California Bill AB 2998

	Fabric Type	Materials	Density	Air Perm.
			g∙m ⁻²	cm ³ ·s ⁻¹ ·cm ⁻²
B0	Cover fabric	Polypropylene	340 ± 7	3.9 ± 0.3
B1	Nonwoven-bonded polyester	RC**/PSA* (top), cotton (bottom)	239 ± 21	22.4 ± 1.4
B2	Woven	E glass, no sizing	109 ± 4	9.2 ± 2.2
B3	Nonwoven, 5% RC** binder	Oxidized polyacrylonitrile fibers	240 ± 22	7.1 ± 0.5
B4	Woven	E glass, no sizing	50 ± 1	31.4 ± 4.6
B5	Woven, core spun yarns	Para-amid fiber, fiberglass core	278 ± 3	2.7 ± 0.0
B6	Nonwoven, needle-punched	**RC/PSA hybrid yarn, glass yarn*	275 ± 4	9.7 ± 0.7

PSA** : <u>Polysilicic acid</u> *RC** : <u>Regenerated cellulose</u> B1, B5, B6: UF Commercial Barriers B2, B3, B4: Experimental Barriers

FRONT VIEW

1000

25

Chair Mock-ups

Back cushion (polyester fibers)
Seat cushion (TB117-2013 foam)
Armrest padding (TB117-2013 foam)
Armrest support (5 mm plywood)

Dimensions in mm

All chair components protected by FB

Seams (Metal Staples)

1000

150

7 chair types (C0 to C6):

C0: cover fabric (B0) only C1 to C6: cover (B0) +1 fire barrier (B1 to B6)

7 chair types in triplicate tests: tot. of 21 chairs

• Square Burner (18 kW for 80s)

Effect of Fire Barriers: Videos

Fire barriers allows to:

- increase time to peak from 3 min (C0) to 22 min (C1 and C6)
- decrease PHRR from about 3 MW to about 1 MW

engineering

Bottom Ignition (BI): persistent burning under the seat cushion due to the ignition of liquid product of pyrolysis

Bottom Ignition (BI) and PHRR

Bottom Ignition leads to PHRR within (2 ± 1) min

Effect of Fire Barriers on HRR

Bottom Ignition (BI) with consequent pool-fire formation was always observed

Key Factors used to characterize the performance of the Fire Barrier: TTBI and HRR_{BI}

engineering

Example of a Typical Cube Test

"Wetting": appearance of visible liquid pyrolyzates on the bottom barrier

Example of HRR Curve in Cube Test

Cube to Full-Scale Correlation?

Correlation: -TTBI to TTW? -HRR_{BI} to HRR_w?

Prediction of TTBI (and TTP) by Cube

engineering

Prediction of Plateau Value

Conclusions

- In US, shifting from Chemical Fire Retardants toward Physical Mechanisms of Flame Retardancy (e.g., Fire Barriers)
- The Cube Test has been developed to capture Physical Mechanisms of Flame Retardancy (mass/heat transfer)
- Upholstered Furniture as a case study to prove the capability of the Cube Test to:
 - predict Full-scale performance (within the limited data set available)
 - properly rank the effectiveness of Fire Barriers

THANK YOU!

Acknowledgements:

Fire Research Division, NIST: J. Randy Shields, Ickchan Kim, Isaac Leventon, Andre Thompson, Ronald Lankone, Anthony Hamins, Matt Bundy, Arthur Chernovsky

Contact Information: Mauro Zammarano Phone: 301-975-5244 e-mail: mauro.zammarano@nist.gov

ASTM E05-21 WK65005

• Planning Interlaboratory Study

Products:

- 1. Insulation
- 2. Cored laminated composites
- 3. Upholstered furniture

