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Abstract—This report describes the systems of ‘zxy’ 

(abbreviated from ‘zui xing yun’ which means ‘the most fortunate’ 

in mandarin) team in the IARPA Open Automatic Speech 

Recognition Challenge (OpenASR21). We participated in all 

fifteen languages in the constrained training condition, and seven 

languages in the unconstrained training condition. To increase the 

amount of training data in constrained condition, we adopted text-

to-speech (TTS) techniques as an important data augmentation 

method which was shown to be very effective for low-resource 

languages. For the unconstrained condition, we trained several 

end-to-end (E2E) ASR models which had different encoder 

designs. During the evaluation stage, we focused more on case-

sensitive scoring (CSS) tasks for particular languages. Based on 

the official ranking results at that time, we also submitted several 

results in constrained-plus condition based on confidence in our 

TTS based systems, though we did not use any pretrained models. 

Finally, our submitted system yielded good results on several tasks, 

including: swahili-constrained-css, tagalog-constrained-css and 

tagalog-constrained-plus. 

Keywords—low-resource languages, data augmentation, TTS, 

case-sensitive scoring, system fusion 

I. INTRODUCTION  

The goal of the OpenASR (Open Automatic Speech 
Recognition) Challenge is to assess the state of the art of ASR 
technologies for low-resource languages. Every language is 
separated into three training conditions: constrained, 
constrained-plus and unconstrained. We submitted results of 
Eval datasets for all languages in constrained condition and 7 
languages in unconstrained condition. Case-insensitive 
scoring(CIS) Eval dataset will be offered for all fifteen 
languages and additional case-sensitive scoring (CSS) Eval 
dataset for three of the languages. 

For the constrained condition, the hybrid model trained with 
Kaldi toolkit and the main architecture ResNet-TDNNF were 
used. The acoustic training data can only consist of the 10-hour 
Build datasets provided by the OpenASR21, so it’s crucial that 
increasing the diversity of speech training data using 
unsupervised method and a small amount of speech data. The 
improvement of performance can be obviously observed after 

using some methods of data augmentation, such as utterance-
level speed perturbation, training with text-to-speech TTS 
synthesized data, and features concatenating. We purchased a 
batch of publicly available text data from IARPA BABEL 
program [1], WILLTECH [2-7] and LDC (Linguistic Data 
Consortium) and crawled some public texts for different 
languages from the internet to optimize our language models. 
Finally we did decoding, rescoring, and fusing the recognition 
results obtained from different structures. By the way, we 
processed the languages for CSS with the same pipeline as CIS 
but there are some details different. For the unconstrained 
condition, we used extra thousands of speech data for pre-
training, then we adopted the end-to-end (E2E)  based  model as 
the main strategy. Different designs of the encoder architecture 
were also explored. These models were fused and rescored. For 
both of the two conditions, the data processing methods were 
similar. 

During the challenge, the main members of ‘ustc_nelslip’ 
team and ‘zxy’ team have overlap. The two teams had different 
priorities and plans in the evaluation stage: the ‘ustc_nelslip’ 
team focused more on constrained tasks, while the ‘zxy’ team 
experimented with more methods and tasks. For the 
unconstrained condition, because those tasks were very time-
consuming, the two teams worked together in both model 
training and evaluation stages. 

II. CONSTRAINED SYSTEM OF CIS 

A. Training Data 

For the constrained condition, the speech dataset allowed for 
training is only a 10-hour subset of the Build dataset provided 
by NIST for each language. For the text data, we also used 
transcriptions from the IARPA BABEL language packages, 
which lack Somali and Farsi. We crawled public texts from 
website for most languages to further optimize the language 
model. The collected texts were filtered and then added to the 
training corpus. 

The datasets we used from IARPA BABEL language 
packages are listed as follows. 
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Fig. 1. Framework of the constrained system. 

• Cantonese: IARPA-babel101b-v0.4c-build. 

• Pashto: IARPA-babel104b-v0.bY-build. 

• Tagalog: IARPA-babel106-v0.2g-build. 

• Vietnamese: IARPA-babel107b-v0.7-build. 

• Swahili: IARPA-babel202b-v1.0d-build. 

• Tamil :IARPA-babel204b-v1.1b-build. 

• Kurmanji-Kurdish: IARPA-babel205b-v1.0a-build. 

• Kazakh: IARPA-babel302b-v1.0a-build. 

• Guarani: IARPA-babel305b-v1.0c-build. 

• Amharic: IARPA-babel307b-v1.0b-build. 

• Mongolian: IARPA-babel401b-v2.0b-build. 

• Javanese: IARPA-babel402b-v1.0b-build. 

• Georgian: IARPA-babel404b-v1.0a-build. 

B. Overall System Diagram 

The overall framework of the constrained system is shown 
in Fig. 1. It contains several main parts including GMM 
modeling, data processing, acoustic model training, TTS system 
and language modeling. Details of each part will be described in 
following sections. 

C. Data Processing 

1) Data cleaning 
The data cleaning was first applied following the recipe in 

Kaldi [8]. It aims to remove corrupted portions that are not 
accurate enough. The basic idea is to decode the training speech 
with an existing in-domain GMM acoustic model and build a 
biased language model from the reference transcripts, and then 
generate revised segmentation information [9]. 

2) Speed and volume pertubation 
Speed and Volume perturbation [10] is as an effective data 

augmentation method for the raw data, which can alleviate 
overfitting and improve robustness of the models. We found that 
perturbating the speed with 3 factor ( 0.9,1.0,1.1) can give the 

best improvement. For volume perturbation, we used scale 
factors randomly chosen between 0.125 and 2.0. 

3) SpecAugment   
SpecAugment [11] is a simple data augmentation method for 

ASR which is applied directly to the input features of a neural 
network. We applied SpecAugment to the filterbank features, 
more details can be referred in [11]. 

D. Acoustic Model Training 

1) Training pipeline 
We built a hybrid DNN-HMM system using the Kaldi [8] 

toolkit. For the training data, all audio files in the training set are 
resampled to 8 kHz since most of the files are sampled at 8 kHz. 

The rest 13 languages have corresponding IARPA BABEL 
language packs except for Somali and Farsi. Thus, the 
pronunciation lexicons were built based on BABEL. For Somali 
and Farsi, we used the lexicons provided by the 10-hour Build 
dataset.  

A monophone GMM-HMM model was first trained with 
inputs of 13-dim mel-frequency cepstral coefficients (MFCCs) 
features (with 3 pitch features). Then, a context-dependent 
triphone model was trained, followed by Linear Discriminant 
Analysis (LDA) and Maximum Likelihood Linear Transform 
(MLLT) estimation. Finally, a speaker adaptive training (SAT) 
[12] model was trained with FMLLR [13]. We also estimated 
the probability of silence [14] from aligned training data during 
the training process. 

For neural network training, alignments and numerator 
lattices were generated from the GMM-HMM model. We chose 
the ResNet-TDNNF network as our baseline acoustic model, 
which was trained using LF-MMI criterion [9] with cross-
entropy (CE) regularization. Such pipeline is the so-called 
‘chain model’ training in Kaldi. 

2) Baseline: ResNet-TDNNF model 
Our baseline acoustic model consists of stacks of Residual 

Network (ResNet) and Factorized Time Delay Neural Network 
(TDNNF). The Residual Network (ResNet) consists of 
convolutional layers, Batch Normalization (BN) and Rectified 
Linear Unit (ReLu) [15]. 



 

Fig. 2. ResNet-TDNNF architecture. 

The popular TDNNF network, which is a fundamental 
component of our acoustic model. TDNNF is structurally 
similar to TDNN whose layers have been compressed via SVD, 
but are trained from a random start with one of the two factors 
of each matrix constrained to be semi-orthogonal in order to 
prevent instability in back-propagation [16]. A regular TDNNF 
block consists of a linear layer, an affine component, a ReLu 
nonlinear component, and a batch normalization operation 
followed by dropout. 

Fig. 2 shows the architecture of ResNet-TDNNF. The 
network has two inputs: 40-dimensional Mel-filter bank 
coefficients (filter banks) features and 100-dimensional online i-
vector features. In our systems, we trained a diagonal UBM-
based i-vector extractor for speaker adaptation [17]. In order to 
adapt to the CNN structure, the 100-dim i-vectors are mapped to 
200-dim by LDA transformation before being concatenated to 
the filterbanks. 

We performed batch normalization on both i-vector and 
filterbank features. SpecAugment was used in training. Two 
inputs were transformed into spatial 40-dimensional planes (five 
for i-vector features, one for filterbank features) and combined 
with each other. The batch size was 128 or 64 with 6 epochs 
training in total. The initial learning rate was 0.001 and decayed 
during training, with the final learning rate 0.00005. In our 
experiments, we used the baseline acoustic model to evaluate 
different strategies and search for hyper-parameters. 

3) Other architectures 
In addition, we also trained other model architectures such 

as CNN-TDNNF, ResNet-Multistream-TDNNF [18], ResNet-
TDNNF-Attention[19], and ResNet-TDNNF-RBiLSTM [19]. 
The details of them are listed as follows: 

⚫ CNN-TDNNF: 6-layer CNN blocks + 12-layer 
TDNNF 

⚫ ResNet-TDNNF-Attention: 7-layer ResNet + 12-layer 
TDNNF 

⚫ ResNet-TDNNF-BiLSTM: 7-layer ResNet + 3-layer 
TDNNF-RBiLSTM 

⚫ ResNet-Multistream-TDNNF: 7-layer ResNet + 12-
layer TDNNF(x3) 

These architectures were built using the LF-MMI training 
criterion by Kaldi. Lattice fusion [20] followed by Minimum 
Bayes Risk (MBR) decoding was performed to combine 
recognition results from different models using different 
architectures. 

E. Increasing the Diversity of Training Data Acoustic 

We found that the model trained on 10-hour data was easily 
overfitting and it was difficult to improve the performance of 
ASR by adjusting the parameters only. Therefore, we trained the 
system with various data augmentation methods to alleviate the 
overfitting problem. And the diversity of the system was of great 
benefit to the final fusion. 

1) TTS synthesized data 
In constrained condition, using Text-to-speech (TTS) 

outputs from TTS trained on designated constrained training 
data is allowed. We used Flow-TTS [21], which is a non-
autoregressive end-to-end neural TTS model based on 
generative flow. Using a simple feed-forward network trained 
by jointly learning the alignment and spectrogram generation, 
Flow-TTS can achieve high-quality spectrogram generation. 

We used a GMM model to get force alignment on the 
cleaned data, in order to get training resources for Flow-TTS 
training. The TTS model was used to synthesize MFCC (with 
pitch) and filterbank features separately. MFCC (with pitch) was 
used to generate the numerator lattices for chain model. And the 
filterbank features were used as input features to the chain model. 

However, most words in the external texts were out-of-
vocabulary (OOV). Therefore, we used the training lexicon 
provided by BABEL to train a grapheme-to-phoneme (G2P) 
model [22], which predicts the pronunciation of OOV words in 
external texts. Then the TTS model worked well with the 
predicted phonemes. 

By using TTS synthesized data, we found that the 
performance of different structural models were improved. 
Table I shows the comparison of models trained without TTS 
Data and with TTS Data on the Pashto Dev set. 

TABLE I.  THE COMPARISON OF MODEL TRAINED WITHOUT TTS DATA 

AND WITH TTS DATA ON THE PASHTO DEV SET. 

Model 
WER (%) 

Without 

TTS data 

With 

TTS data 

CNN-TDNNF 47.3 46.1 

ResNet-TDNNF 47.1 45.6 

ResNet-TDNNF-Attention 47.2 45.8 

ResNet-Multistream-TDNNF 47.5 45.9 

ResNet-TDNNF-RBiLSTM 50.0 47.3 

 

 



2) Utterance-level speed and volume perturbation 
The default perturbation process was performed for the 

whole original audio. However, the speaker's speed and volume 
usually change frequently in the dialogue scenarios. Therefore, 
we performed speed and volume perturbations at the utterance-
level aiming to alleviate overfitting and improving the 
robustness of the model. To prevent over-perturbation, we 
calculated a series of allowable lengths based on the length of 
the utterance and the perturbation factors. When the length of 
perturbated utterances exceeds the allowed lengths, other 
suitable speed factors will be chosen to be used until the length 
meet the requirement. 

Finally, we tripled the amount of training data. As for the 
utterance-level volume perturbation, we used a randomly chosen 
scale factor from 0.5 to 1.5. 

3) Feature concatenating encoder representation 
Considering that the end-to-end model and the hybrid DNN-

HMM model are complementary in model fusion, as in [23]. We 
also trained the encoder-decoder (ED) model of the VGG-
transformer [24]. To make the training of the ED model 
converge faster, we applied speed perturbation and Flow-TTS to 
increase the training data. We generated 12 times of the original 
training data with speed factors uniformly sampled from 0.8 to 
1.2 at 0.25 intervals. 

The 512-dim latent representations learned by the Encoder 
can be concatenated to 40-dim filterbank features, which 
brought further improvements to the final fusion system. 

F. Languge Model 

Language models trained on external texts are allowed to use 
in the OpenASR21 challenge. So we firstly use transcriptions 
from the "training" part of the IARPA BABEL program. For 
most languages, we also obtained large amounts of text data 
crawled from web. For convenience, the web-obtained data are 
denoted as ‘public’ data. However, these data are quite different 
from the data styles in BABEL. Data cleaning and filtering were 
performed on the public data. 

Firstly, we performed cleaning on the public data. Chars that 
didn’t correspond to the language being processed were 
removed. Secondly, a domain classifier was trained to select 
data that have similar genres with BABEL from the public data 
[25]. For Cantonese, the domain classifier was migrated from 
the pre-training model Chinese BERT [26]. For the other 
languages, the domain classifiers were migrated from the 
multilingual pre-training model XLM-R [27]. Finally, we added 
colloquial noise to the extra text since the data genre in 
constrained condition is conversational telephone speech (CTS). 

The first-pass language model was generated by 
interpolating an N-gram model trained on public data and 
another N-gram model trained on BABEL data. This process 
was done by using the SRILM [28]. As for language model (LM) 
rescoring, we adopted Transformer structure [29] for Cantonese 
and bidirectional RNN structure [30] for the rest languages. 

For Cantonese, we continued to train Chinese BERT for 
several iterations using Cantonese public data and then fine-
tuned using Cantonese BABEL data, aiming to transfer Chinese 
BERT to the domain of conversational style. We masked the 

whole word to make the model learn the inter-phrase 
relationship better. Compared to the first-pass decoding, the 
BERT-based [31] pretraining language model can bring 
absolute 0.3% WER improvement after rescoring on Cantonese. 

For the rest languages, the models were initialized using the 
public data and fine-tuned using the BABEL training data 
corresponding to the language being processed. The RNNLM 
rescoring is effective in most language excepts Tamil, 
Vietnamese and Kurmanji-Kurdish. The RNNLM rescoring can 
bring at least absolute 0.2% WER improvement. 

G. Voice Activity Detection (VAD) 

Since the audios in CIS task are conversational telephone 
speech, most audios are without any environment noises. We 
firstly trained a TDNN-LSTM based VAD model for each 
language, using the implementations in Kaldi. However, the 
data-driven based model trained on only 10-hour data was not 
very stable according to our experiments. We found lots of 
strange missed error where the speech was very clear. Thus, we 
used an energy-based VAD method as a complement. The final 
detection result took the intersection of the two methods. 
Additionally, we expended the time regions in the front and back 
of each detected segment to prevent missing any speech. Each 
expanded duration is about 0.5 second. 

Table II shows our VAD experiments on Cantonese and 
Pashto. The 'manual' represents using the time stamps provided 
in the transcripts of the Dev set. As we can see in the table, 
performance of VAD on Cantonese is similar to the manual time 
stamps. For Pashto, the VAD help to reduce the WER from 49.6% 
to 47.9%, which is mainly due to the reduction of false alarm 
errors in recognition results. In the evaluation stage, we directly 
migrated the strategies tuned on the Dev set for all languages. 

H. Decoding 

We used the WFST-based method for decoding in Kaldi. For 
the first-pass decoding, we used N-gram language model. The 
decoding beam was set to 16, while the beam used in lattice 
generation was 8.5. The LM weight was chosen from 7 to 17. 

I. System Fusion 

We used Lattice fusion followed by MBR decoding [20] to 
combine the recognition results of acoustic models trained with 
different architectures as well as different data augmentations. 
Benefiting from the effective compensation of different systems, 
the system fusion can greatly enhance the performance. 

 

TABLE II.  THE PERFORMANCE OF VAD FOR CANTONESE AND PASHTO 

ON DEV SET 

Language 
WER (%) 

Manual VAD 

Cantonese 46.4 46.4 

Pashto 49.6 47.9 

 



J. Experiment Result 

TABLE III.  THE RESULTS OF EVAL SET 

Language 
WER (%) 

Constrained Constrained-plus 

Amharic 42.5652 40.4499 

Cantonese 48.3032 38.7994 

Guarani 45.4791 43.1233 

Javanese 51.0991 48.3802 

Kurmanji-Kurdish 65.3694 61.8481 

Mongolian 44.8922 41.8978 

Pashto 47.3383 44.0087 

Somali 58.5455 55.2239 

Tamil 65.7738 63.2312 

Vietnamese 43.4393 40.4380 

Swahili 34.7295 32.8487 

Tagalog 43.6949 41.3216 

Georgian 42.3085 39.7809 

Kazakh 53.3439 49.9072 

Farsi 69.8557 69.7951 

 

The final results of Eval set were generated by fusing 
systems of different architectures trained with TTS synthesized 
data, utterance-level speed and volume perturbation and features 
concatenating encoder representation. 

Table III shows the final fusion results, which were released 
by the OpenASR21 scoring server. Note that we also submitted 
several results in constrained-plus condition, but we didn’t use 
any pretrained models. Actually, the results of constrained-plus 
condition were obtained under constrained condition. 

III. UNCONSTRAINED SYSTEM OF CIS 

In the unconstrained condition, we are allowed to use 
additional speech and text training data from any language that 
can be publicly accessed. Because of the large amount of data, 
we used the encoder-decoder (ED) based end-to-end models as 
our unconstrained systems. In OpenASR2021, we only 
participated in Cantonese, Kazakh, Mongolian, Pashto, Tamil, 
Javanese, and Farsi. 

We will describe our system in these several sections: 1) 
Data Pre-processing, 2) Modeling Unit, 3) Pretraining, 4) Model 
Training, 5) Language Model Rescoring, 6) Voice Activity 
Detection, 7) Force Alignment, and 8) Final Results. 

A. Data Pre-processing 

We used some external data which were purchased from 
many corporations. In addition, we conducted a series of data 
crawling to collect more speech-text data. Public videos which 
have subtitles can be seen as the target of data crawling, then 

pairs of audio and text are extracted. Due to time constraints, we 
only did data crawling for speech in Cantonese. 

For Cantonese, the final training dataset consists of three 
main types: 140 hours data provided in IARPA BABEL package, 
1,000 hours data from HUITING Tech Inc [32] and 3,000 hours 
crawled data. For the other six languages, their training data 
contain two main sources: from IARPA BABEL, and purchased 
from WILLTECH (Kazakh: 362 hours, Mongolian: 454 hours, 
Pashto: 315 hours, Tamil: 244 hours, Javanese: 332 hours, and 
Farsi: 324 hours) [2-7]. Dev sets for all languages kept the same 
with original OpenASR2021 datasets. In BABEL dataset, the 
sampling rate is 8 KHz but most of additional speech data are 
sampled at 16 KHz. As a result, we uniformly set the sampling 
rate to 16 KHz. 

We carried out a series of operations to further enhance the 
diversity of original training data. Firstly, we used a method 
called as long-term audio splicing. For example, the non-speech 
segments were took as the separator to extract separate speech 
segments in BABEL, then different speech segments were 
stitched together. Considering the efficiency about data loading 
and model training, we set the maximum length of audio to be 
no more than 20 seconds. Secondly, we applied speed 
perturbation to both the original and long-term spliced data with 
the speed factors of 0.8, 1.0 and 1.2. Thirdly, we conducted noise 
augmentation on all audios. Finally, the overall data of every 
language reached more than 1,000 hours. 

More importantly, we used the Flow-TTS based method to 
generate more acoustic data for training. To achieve it, we first 
sampled 100 hours data from original speech data to train TTS 
models. Then, we collected a large amount of publicly available 
text from websites. Using them, we can easily synthesize large 
amounts of filterbank features. During training, we randomly 
mixed real acoustic features and TTS synthesized features. 

B. Modeling Unit 

It’s necessary to do data cleaning on the collected text data, 
aiming to determine proper modeling units. Firstly, all abnormal 
characters were removed. As a result, Kazakh had 43 characters, 
Mongolian had 38 characters, Pashto had 50 characters, Tamil 
had 50 characters, Javanese had 28 characters, and Farsi had 38 
characters. Secondly, we tokenized the remaining texts using 
byte-pair-encoding (BPE) [33] and obtained 8,000 BPEs for 
each language except Cantonese. For Cantonese, we directly 
used Chinese characters which were more than 3,000 kinds and 
26 English alphabets. Finally, all modeling units were sorted by 
frequency of occurrence. 

C. Pretraining 

A good pretrained model can be transferred quickly to other 
tasks. To accelerate our experiments in all seven languages, we 
performed pretraining works using two main types of datasets. 

The first dataset is derived from IARPA BABEL corpora, 
including 25 languages. According to challenge rules, the 
overlapping parts between BABEL and OpenASR2021 were 
removed in advance. After speed perturbation and noise 
augmentation, approximately 8,000 hours of data were obtained. 
We directly used single characters in 25 languages as the 



modeling units instead of using BPE. And all the characters in 
words were segmented with tag ‘<sep>’. 

The second dataset consists mainly of Chinese and English, 
which includes many publicly available corpora such as Aishell 
[34], Aishell2 [35], Librispeech [36], TIMIT [37] and 
Switchboard [38]. The modeling units include 8,000 Chinese 
characters and 6,000 English BPEs. 

For convenience, the model trained on the first dataset is 
denoted as ‘Multi-lingual pretrained’, and the other is ‘Ch-En 
pretrained’. When using them, we only used the encoder of the 
pretrained models. 

D. Model Training 

We trained five different encoder-decoder based models. 
The optimization process follows a multi-task approach, one 
task is the final cross-entropy loss of the ED model, and the other 
one is the CTC loss of the encoder. 

The Adam optimizer and warmup strategy were used and the 
initial learning rate was set to 0.0007. We also applied the 
SpecAugment and Scheduled Sampling [39] to make the system 
more robust. The E2E systems were trained using the open-
source toolkit Fairseq [40]. Table IV describes the training 
setups about all five models which differs in the encoder design. 
As to the decoder part, five models use the same structure which 
contains six transformer layers. For each language, we trained 
all five types of models. 

In the inference stage, we first conducted parameter 
averaging to each model and got five final models. When 
decoding, the beam size was set to 15. The posterior 
probabilities of all models were weighted and averaged. 
Meanwhile, those probabilities were also divided by the 
temperature constant for smoothing. The strategy was first 
validated in some languages and then extended to others. Table 
V shows the results of Dev sets on both Mongolian and Farsi. 

Comparing Model 1 and Model 2 in Table IV and V, it’s 
observed that training with TTS synthesized data can improve 
the overall performance. From the results of Model 2 and Model 
5, the Multi-lingual pretrained model performs better than the 
Ch-En pretrained model, which can be attributed to more 
language coverage in training. Among all models, Model 5 
yields the lowest WER. As the number of models increases in 
fusion stage, the recognition results consistently improve. The 
performance trend of the other five languages is similar to Table 
V. 

E. Voice Activity Detection (VAD)  

The VAD strategy in the unconstrained condition is similar 
to the constrained condition. Since an ED ASR model itself can 
also serve as a VAD module to some extent, we found that a 
simple energy-based VAD with proper thresholds could yield 
good and stable performance in unconstrained tasks. In the Dev 
set, replacing manual segments with energy-based VAD 
strategy could yield similar WERs on an ED ASR model. Finally, 
we migrated the same methods to the Eval set. 

 

 

TABLE IV.  THE TRAINING SETUPS OF DIFFERENT ED MODELS  

Model Encoder 
Training Data 

Type 

Pretrained 

Model 

Model 1 

9-layer DenseNet + 

12-layer conformer 
block 

Realistic Ch-En 

Model 2 

9-layer DenseNet + 

12-layer conformer 

block 

Realistic + TTS Ch-En 

Model 3 
4-layer Vggblock + 12 

conformer layers 
Realistic + TTS Multi-lingual 

Model 4 
4-layer Vggblock + 12 

transformer layers 
Realistic + TTS Multi-lingual 

Model 5 
9-layer DenseNet + 12 

conformer layers 
Realistic + TTS Multi-lingual 

TABLE V.  THE RESULTS OF DIFFERENT MODELS AND MODEL FUSION 

Dev Set 
WER (%) 

Mongolian Farsi 

Model 1 35.6 41.1 

Model 2 33.6 39.5 

Model 3 33.8 38.5 

Model 4 34.2 40.9 

Model 5 33.2 37.5 

Model 1 + Model 2 32.5 37.5 

Model 1 + Model 2 + Model3 30.8 35.2 

Model 1 + Model 2 + Model3 + 
Model 4 

29.5 34.8 

Model 1 + Model 2 + Model 3 + 

Model 4 + Model 5 
28.4 33.7 

F. Language Model Rescoring 

Since the one-best sequence in decoder output may not be 
the optimal result, we used an additional language model to do 
rescoring. We trained language models based on BERT. The 
training data consist of BABEL (training set) and the collected 
text data described above. The LM rescoring is useful in a few 
languages. 

G. Force Alignment 

As mentioned in the data pre-processing section, we used a 
large amount of long-term audios in training. During testing, it’s 
better to conduct long-term splicing on VAD segments for 
matching such conditions. Segments spaced less than 1.5 
seconds were sliced together, and the maximum length was set 
to 20 seconds. In our experiments, long-term testing can 
consistently get better results. 

The final evaluation requires that the format of system output 
files is CTM. But the output sequences of an ED based system 
lacked fine-grained time information for every recognized word. 
To solve this problem, we also trained a hybrid DNN-HMM 
system using Kaldi, of which the model architecture is the same 
as the baseline used in constrained tasks. This hybrid system was 
only used to do force alignment on the recognized sequences 
generated by the ED system. As a result, we got the duration of 
each word and made final CTM files. 



H. Final Result 

TABLE VI.  THE RESULTS OF EVAL SET 

Language WER (%) 

Cantonese 30.1925 

Kazakh 38.1197 

Mongolian 31.8812 

Pashto 34.0277 

Tamil 56.9548 

Javanese 44.4218 

Farsi 52.0046 

 

The performances of our final fusion systems of Eval set 
are presented in Table VI.  

IV. CONSTRAINED SYSTEM OF CSS 

Case-sensitive scoring tasks are offered about Kazakh, 
Swahili, and Tagalog in OpenASR21, which means words 
capitalized differently between the hypothesis with the reference 
will not  count as a match. 

For CSS, all datasets stem from the IARPA MATERIAL 
program. MATERIAL datasets are separated into three data 
genres, conversational telephone speech (CTS), news broadcast 
(NB) and topical broadcast (TB). Table VII show the 
compositions of these two kinds of datasets. 

CTS data in BABEL are from conversations between two 
persons over the telephone on a topic of their choosing. 
Conversations vary in length, up to approximately 10 minutes. 
CTS data in MATERIAL are either from a subset of BABEL 
CTS data or newer sets collected and annotated using the 
BABEL methodology. 

MATERIAL NB data contain audio segments of 
approximately 2.5 minutes from widely distributed broadcasts 
as well as regional and local news covering news topics and 
current affairs. The broadcasts are recorded with studio quality, 
and the speech context could be formal or informal depending 
on the segments. 

MATERIAL TB data are similar to NB data in terms of 
audio quality and speech characteristics, but more of in-depth 
topics. Each recording is approximately five minutes. Table VIII 
show the durations of the different data genres in these three 
languages. 

For CSS task, we adopted the same strategies of data 
processing, acoustic model training, VAD, decoding, and 
system fusion as that in the CIS task. 

A. Training Data 

For each language, the 10-hour Build set provided by 
OpenASR21 would be used for training the acoustic model. We 
also selected the training transcriptions of BABEL as additional 
text data to train the language model (see Table IX). 

TABLE VII.  THE COMPOSITONS OF CIS AND CSS DATASETS 

Dataset Resources Data Genre 

CIS 
BABEL (MATERIAL 

for Somali and Farsi) 
CTS 

CSS BABEL, MATERIAL CTS, NB, TB 

TABLE VIII.  TOTAL DURAITON ABOUT THE TRAINING DATA IN CSS 

LANGUAGES . 

Language Data Genre Duration 

Kazakh 
NB + TB 5 hours 

CTS 5 hours 

Swahili 
NB + TB 5.5 hours 

CTS 4.5 hours 

Tagalog 
NB + TB 3 hours 

CTS 7 hours 

TABLE IX.  IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL 

TEXT DATA 

Language LDC ID Language Package 

Kazakh LDC2018S13 IARPA-babel302b-v1.0a-build 

Swahili LDC2017S05 IARPA-babel202b-v1.0d-build 

Tagalog LDC2016S13 IARPA-babel106-v0.2g-build 

 

B. Modeling 

According to the OpenASR21_Evaluation_Plan [41], words 
capitalized differently from the reference transcriptions will not 
count as a match, so we kept the cases of words in corpus, 
lexicons and recognition results, which means the final words 
we submitted would consist of upper and lower cases. In order 
to obtain more available words, for each language, we combined 
the corresponding lexicons from the Build dataset of 
OpenASR21 and the IARPA BABEL language packs as the 
final lexicon we used. 

We tented to treat the prefix of file names as speaker-ids. For 
CSS data, the NB/TB audios are named differently from the CTS 
audios. The CTS audios were processed the same way in CIS, 
while the NB/TB data were processed in two ways: one is 
mapping all the NB/TB audios to the same speaker; another is 
mapping each NB/TB audio to its own speaker. For Kazakh, the 
first operation reduced WER of Dev set by absolute 2.8% 
compared to the second operation, but brought no improvement 
to the other two languages. 

C. Language Model 

We found that part of the Build datasets of OpenASR21 is 
the subset of the training datasets of BABEL. So we removed 
the extra repeated transcriptions to avoid the overfitting of 
language model caused by the overlapping data. Then the rest 
transcriptions were adopted as the corpus for language modeling. 

The language model was an N-gram model trained on the 
corpus using the SRILM [28]. We knew the BABEL datasets 

https://catalog.ldc.upenn.edu/LDC2018S13
https://catalog.ldc.upenn.edu/LDC2017S05
https://catalog.ldc.upenn.edu/LDC2016S13


only consist of CTS, but it really reduced the WER of Dev set 
compared to the language model which only used the text in 10-
hour build corpus, about absolute 0.8% for Kazakh and Swahili, 
2.4% for Tagalog. 

We also attempted the same language modeling method used 
in CIS to build the second-pass language models without 
adjustment because of the poor time. The public data made no 
contribution to the WER because of the unreasonable data 
composition, which needs to be further tuned and researched. 

D. Confidence Filtering 

We applied confidence filtering to the ASR results obtained 
from lattice. Words are filtered according to their confidence 
scores. The threshold was set to be 0.2, which means the 
recognition results with confidence scores below the threshold 
would be discarded. If the deletion errors is high, we will tend 
to set a small threshold. The higher the threshold, the less 
substitution and insertion errors. We found that confidence 
filtering bring about at least 0.1% improvement in WER for each 
language. 

E. Experiment Results 

When testing on Dev set, for example, we got different 
results for ‘Manila’. The results are shown in Fig. 3. For the 
lower case, the substitute error was generated. But for the upper 
case, the recognized word was correct. So it is necessary to get 
the right form of each recognized word for the case-sensitive 
scoring. 

Table X shows our final fusion results on Eval datasets.  

 

 

Fig. 3. Evaluation results of ‘Manila’. 

 

TABLE X.  THE WER ON EVAL DATASETS 

Language 
WER(%)  

Constrained Constrained-plus Unconstrained 

Swahili-CSS 43.4985 43.9941 —— 

Tagalog-CSS 46.177 46.2981 —— 

Kazakh-CSS 54.6797 52.8451 —— 

 

HARDWARE AND TIME REQUIREMENT 

TABLE XI.  THE HARDWARE DESCRIPTION OF A SINGLE SERVER 

OS CentOS 7.2 64-bit 

CPU num 48 

CPU description 
Intel(R) Xeon(R) CPU E5-

2650 v3 @ 2.30GHz 

GPU num 4 

GPU description Tesla V100-PCIE 32GB 

RAM 128 GB 

Disk storage 10 TB 

  

The hardware description of a single server is shown in 
Table XI. In constrained condition, we performed all training 
experiments on a single server. For each language, the elapsed 
wall-clock time is approximately 20 hours for a single whole 
system. It takes 40 minutes for GMM training, 5 hours for TTS 
model training on 1 GPU and 4 hours for chain model training 
on 1 GPU. With TTS synthesized data, it takes 6 hours for 
GMM training, 7 hours for chain model training on 4 GPU in 
parallel. GPU resources were only used for NN acoustic model 
training. Running decoding pipeline using GPU on the Eval set 
takes about 30 minutes. And the maximum memory 
consumption in decoding was around 12 GB. 

In unconstrained condition, the processing time of 
pretraining on 25 languages using 24 GPUs is about 40 hours. 
For each language, it takes 10 hours for TTS training on 4 GPUs, 
40 hours for a single ED model training on 12 GPUs. The total 
processing time required is about 80 hours. 
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