Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 34 of 34

Precision metrology with integrated photonics

Ongoing
This project develops integrated photonics– devices based on waveguides that are fabricated in a nanoscale device layer on a silicon wafer –for the purposes of exploring nonlinear science, enabling new applications with scalable integrated photonics light sources, and enhancing classical and quantum

Precision Spectroscopy and Quantum Control of Trapped Molecular Ions

Ongoing
Spectroscopy and Quantum Control of Molecular Ions Molecules exhibit vibration and rotation of their nuclei, degrees of freedom not present in atoms, and less stringent selection rules for transitions. This creates experimental challenges and great opportunities for exploring new physics. In this

Quantum Computing with Trapped Ions

Ongoing
Quantum Computing with Trapped Ions We pursue proof-of-concept experiments in quantum information processing and quantum control with trapped ions. In addition to pushing current limits on traditional quantum gate-based architectures for quantum computing we explore alternative approaches to

Quantum Networking with Trapped Ions

Ongoing
The goal of a quantum network is to establish entanglement as a resource between distant locations. Shared entanglement over long distances may enable distributed quantum computing, quantum-enhanced long-baseline interferometry, the transmission of complex quantum states, or a variety of other

Quantum Simulation and Sensing with Trapped Ions

Ongoing
Entanglement between individual quantum objects exponentially increases the complexity of quantum many-body systems, so systems with more than 30-40 quantum bits cannot be fully studied using conventional techniques and computers. To make progress at this frontier of physics, we are pursuing Feynman

Semiconductor Integration of Electronics and Photonics

Ongoing
Using integrated photonics, we generate spectrally flat, dark soliton microresonator frequency combs with accurate alignment to the ITU-T grid. These laser sources support innovation in advanced communication and computation applications. Moreover, technical development in these application areas

Time Measurement and Analysis Service (TMAS)

Ongoing
The TMAS meets the requirements of any facility or organization that needs to maintain a high accuracy time standard. TMAS customers include calibration and metrology laboratories, telecommunication providers, instrumentation manufacturers, military installations, defense contractors, government

Trapped Sr+ ion clock; a secondary realization of the SI second

Ongoing
The single 88Sr + clock is attractive for both its frequency accuracy and for its relative simplicity. The 674 nm clock transition has been independently studied at several NMI’s at the 10 -17 level [1-4]. Advances in light source technology [5,6] may allow operation with just two lasers: one for

Trapped Ion Optical Clocks

Ongoing
This project uses techniques from quantum information science to enable precision metrology. We use the dipole-forbidden 1S 0 - 3P 0 transition in singly-ionized aluminum as an stable frequency reference (natural linewidth ~8 mHz), which we detect using quantum logic spectroscopy with a second ion