Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 21 of 21

Advanced Materials Design: Electronic and Functional Applications

Ongoing
Accelerating Materials Discovery using Machine Learning and AI Using machine learning and AI techniques along with high-throughput DFT calculations materials with specific properties are identified to accelerate the the discovery process for a variety of applications. Some of the specific materials

Advanced Materials Design: Structural Applications

Ongoing
Designing New High Temperature Co Superalloys In collaboration with the NIST CHiMaD center, an ICME approach in being used to develop new Co superalloys that are strengthened using an ordered FCC (L1 2) phase (similar to the related Ni-based superalloys). The design goals for these alloys include

Atomistic Potentials and the Future of Nanomaterials Metrology

Ongoing
Atomistic simulations are increasingly being used as a tool to understand and predict properties of materials in systems, such as nanomaterials, where direct measurement is time-consuming or extremely difficult. The success of atomistic simulations depends critically on the fidelity of a specific

Atomistic tools for structure-property investigations

Ongoing
Interatomic Potential Repository The Interatomic Potentials Repository (IPR) provides a source for interatomic potentials (force fields), related files, and evaluation tools to help researchers obtain interatomic models and judge their quality and applicability. The files provided are of known

Carbon Removal, Capture, Use, and Sequestration

Ongoing
NIST develops benchmark materials, measurements, data, and models to accelerate innovation in and validate performance of materials and technologies for the capture of carbon from air and sequestration in building materials.

Developing a Materials Innovation Infrastructure

Ongoing
Phase Field Community Hub ( PFHub) and Benchmarks The Phase Field Community Hub provides a framework that supports phase field practitioners and code developers participating in an effort to improve quality assurance for phase field codes. The main thrust of this effort is the generation of a set of

DFT Repositories and Informatics

Ongoing
Historically, the printed article has served as the medium de rigueur for the dissemination of scientific information. This works well when the context and results of an experiment or theory fit on a few pages; however, it is insufficient as a publication medium for many computational studies. For

JARVIS-ALIGNN, JARVIS-ALIGNN-FF

Ongoing
ALIGNN uses a line graph neural networks to include bond distances and angular information graph to incorporate finer details of atomic structure, leading to high accuracy models. While the nodes of an atomistic graph correspond to atoms and its edges correspond to bonds, the nodes of an atomistic

JARVIS-ML

Ongoing
JARVIS-ML introduced Classical Force-field Inspired Descriptors (CFID) as a universal framework to represent a material’s chemistry-structure-charge related data. With the help of CFID and JARVIS-DFT data, several high-accuracy classifications and regression ML models were developed, with

Machine Learning to Predict Multicomponent Colloidal Crystals

Ongoing
There is a direct link between a material’s macroscopic properties and its microscopic structure, which makes rational bottom-up self-assembly a powerful tool for engineering properties of materials. In general, colloids are facile material building blocks whose shape, charge, and surface

Measuring Intermolecular Interactions with Electro-Acoustic Spectroscopy

Ongoing
We have a number of opportunities to collaborate with us. See below for details. What does this project aim to do for the chemical industry? Many industrial processes depend on the intermolecular environment- the solvents and ions that surround a molecule. These interactions impact separations

Metrics for Reactive Wetting in Complex Systems

Completed
From fundamental physical considerations, we have derived a set of partial differential equations describing wetting and spreading. These equations are derived using a variational thermodynamic principle applied to a two-component alloy system with three (vapor, liquid and solid) phases. The method

Metrologies for Non-linear Materials in Impact Mitigation

Ongoing
Overview This project develops fundamental structure-property measurements on model materials and novel material chemistries from quasi-static to dynamic rates. The goal is to foster a materials by design approach for novel energy dissipation and force re-direction mechanisms. Processing-Structure

Microstructure-Property Tools for Structure-Property Design

Ongoing
Microstructure-level Structure-Property Tools OOF: Finite Element Analysis of Microstructures enables materials scientists calculate macroscopic properties from images of real or simulated microstructures. It reads an image, assigns material properties to features in the image, and conducts virtual

Modeling Dispersion Rheology for Non-Spherical Particles

Completed
The goal of this MGI project is to establish an interactive database, generated by sophisticated modeling, such as dissipative particle dynamics and smooth particle hydrodynamics, to compute the rheological properties of polymer composites, where interaction among inclusions, inclusion particle

Polymer Analytics

Ongoing
This project focuses on a variety of activities to achieve the aforementioned goal of accelerating the discovery of new polymer physics. Polymer databases In collaboration with partners, we build FAIR (findable, accessible, interoperable, reproducible) data resources that enable machine learning

Precision X-ray Emission Line Measurements

Ongoing
Precise knowledge of the shape and position of x-ray emission lines is the basis of connecting x-ray diffraction measurements to the Système Internationale d'Unités (SI), the official worldwide standard for making any measurement. Measurements of position of x-ray emission lines have been made been

Structure-Property Relationships for High-Strength Materials

Ongoing
The body-armor community generally bases armor design on empirical models that do not directly relate molecular properties to performance. Aramid, aramid copolymers, and polyethylene fibers are highly oriented, anisotropic fibers that require specialized characterization techniques. In addition

X-ray Testbed for Breakthrough Catalyst Measurements

Ongoing
Interested in collaborating? See below What does this project do for industry? Current measurement techniques are unable to follow the reaction pathways during catalysis and are limited to observing only the end products or looking at catalysts outside of realistic reaction conditions. Our new