Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 17 of 17

Designing Advanced Scanning Probe Microscopy Instruments

Ongoing
SPM is a general acronym for various probe instruments. The "P" in SPM stands for various types of probe measurements, such as capacitance (C), force (F), tunneling (T), etc. The scanning tunneling microscope (STM), including custom designs at the CNST, uses the quantum mechanical principle of

Designing the Nanoworld: Nanostructure, Nanodevices, and Nano-optics

Ongoing
Developing and exploiting nanodevices for quantum and nanotechnologies requires nanoscale and atomic scale modeling of ultrasmall structures, devices, their operation, and their response to probes. Key challenges of understanding physics at the quantum/classical interface and measurement at the

DNA Origami for Precise Manufacturing of Nanoscale Structures

Completed
The base pairing of adenine to thymine and guanine to cytosine to form DNA provides a robust molecular recognition scheme that can be used to create a wide variety of well-ordered nanostructures. DNA origami, which uses a long scaffold strand folded together by specific sets of short staple strands

Light-matter interactions in Semiconductor Nanostructures

Ongoing
We investigate the interaction of light with semiconductor-based nanostructures. We extend concepts of entanglement and coherence in atomic physics to our solid-state systems. Our devices are based on semiconductors, like GaAs. We use InAs quantum dots (QDs) in GaAs as artificial atoms; they have

Measuring Topological Insulator Surface State Properties

Ongoing
A family of TI materials can by synthesized by combining binary compounds of Bismuth (Bi) or Antimony (Sb) with Selenium (Se) and Tellurium (Te) to form Bi 2Se 3, Bi 2Te 3, and Sb 2Te 3 compounds. In these material compounds the spin of the electron has a strong interaction with the motion of the

Modeling and Simulation of Nanofabrication (Archived)

Completed
While self-assembly is still in its relative infancy with respect to practical use, with much additional research required to reach maturity, the more widely utilized top-down methods will continue to require advances and modifications to improve current nanomanufacturing techniques. This modeling

Multiscale structure and dynamics in advanced technological materials

Ongoing
New technologies increasingly harness materials phenomena that operate across many length-scales: e.g., in selective gas adsorption, additive manufacturing, new alloy designs, or advanced concretes. To overcome technology barriers, it is no longer sufficient just to characterize the materials

Nanoscale Property Measurements by Atomic Force Microscopy

Ongoing
Over the past several decades, Atomic Force Microscopy (AFM) has advanced from a technique used primarily for surface topography imaging to one capable of characterizing a range of chemical, mechanical, electrical, and magnetic material properties with nanometer resolution. Such characterizations

Nanotribology for Nanomanufacturing (Archived)

Completed
Friction and wear are major causes of mechanical failures and dissipative energy losses. These shortfalls account for a significant portion of the annual gross domestic product in the United States, amounting to approximately $800 billion in 2010. It is estimated that tens of billions of U.S

Photonic Dosimetry

Ongoing
With this effort, NIST is responding to industry needs for traceable, measurement solutions that can resolve spatial variations of absorbed dose at the level of individual components on a silicon wafer or bacteria on surgical instruments. Presently, there is only limited traceability to national

Probing Graphene Electronic Devices with Atomic Scale Measurements

Ongoing
Two of the remarkable features of graphene that are opening avenues to multiple applications are its high transport carrier mobility and the broad tunability of its electronic properties. Graphene charge carriers can be tuned continuously from negative carriers (i.e., electrons), to positive (holes)

Structure, Defects, and Scattering in Graphene

Completed
The graphene honeycomb lattice is a key element in determining many of graphene's spectacular properties, which are desirable for a host of electronic applications. The graphene 6-fold symmetric lattice gives rise to charge carriers behaving like light-waves having zero mass. The charge carriers in

Theory and Modeling of Materials for Renewable Energy

Ongoing
Nanostructured materials offer potential benefits for a range of renewable energy applications that rely critically on interfaces for separating charges, including photovoltaics, thermoelectrics, and electrochemical energy storage. The use of nanostructures allows scientists and engineers to