Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 37 of 37

Optical and Optoelectronic Materials Characterization

Ongoing
Today's electronics have reached a point where sheer computation power has combined form and function as the key driver of large consumer markets. The demand for portable and pervasive electronics with greater functionality promises significant changes over the next decades in how society interacts

Plasma Metrology

Ongoing
Plasma, the fourth state of matter, is common in both nature (e.g., lightning, the earth's ionosphere, stellar objects) and in modern technology (e.g., semiconductor processing, lighting, plasma televisions, medical equipment). Yet despite this ubiquity, the plasma state is still a wide open

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Polymer Additive Manufacturing and Rheology

Ongoing
We are measuring the fundamental processes and material parameters that are critical to understanding and furthering polymers-based AM. These efforts will aid the AM ecosystem through better online monitoring capabilities and developing strategies for materials optimization. In situ measurements of

Precision Measurement Grants Program

Ongoing
If funding is available, two new grants in the amount of $50,000 per year will be awarded for the initial period of October 1 through September 30 of the following year. Each award may be continued for up to two additional years; however, future or continued funding will be at the discretion of NIST

Precision Spectroscopy and Quantum Control of Trapped Molecular Ions

Ongoing
Spectroscopy and Quantum Control of Molecular Ions Molecules exhibit vibration and rotation of their nuclei, degrees of freedom not present in atoms, and less stringent selection rules for transitions. This creates experimental challenges and great opportunities for exploring new physics. In this

Radioanalytical Metrology

Ongoing
The Group engages in a wide range of methods applicable to the detection and characterization of nuclear materials. The work can benefit environmental studies, waste remediation, naturally occurring radioactivity detection and characterization and general radioanalytical metrology. Expertise in

Synchrotron X-ray Absorbance Spectroscopy

Ongoing
The Absorbance Spectroscopy effort seeks to develop measurements that provide details of the local chemical, electronic, and physical structure in advanced materials. Spectrometer technology is developed as part of the NIST BNL partnership at the National Synchrotron Light Source II in Upton, NY

Synchrotron X-ray Spectroscopic Imaging

Ongoing
Building off technologies and expertise developed in the Synchrotron X-ray Absorption Spectroscopy project, the Spectroscopic Imaging effort seeks to develop measurements that provide spatial mapping of the local chemical, electronic, and physical structure in advanced materials. Technology is

Ultrafast Spectroscopy to Advance Microelectronics

Ongoing
Continued advancement in microelectronics, including analog and digital electronics, power electronics, optics and photonics, and micromechanics for memory, processing, sensing, and communications as defined by the OSTP “National Strategy on Microelectronics Research,” requires knowledge of material

X-ray Testbed for Breakthrough Catalyst Measurements

Ongoing
Interested in collaborating? See below What does this project do for industry? Current measurement techniques are unable to follow the reaction pathways during catalysis and are limited to observing only the end products or looking at catalysts outside of realistic reaction conditions. Our new