Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Magnetics

News and Updates

Anyone for Anyons?

Researchers have demonstrated that a strange type of quantum particle called the anyon, believed to exist in only two dimensions, can also be created in one dimension. Further studies exploring different types of one-dimensional anyons could bring scientists one step closer to using the particles as a fundamental unit of memory in a quantum computer. A team led by Harvard scientists Joyce Kwan and

Spotlight: Cassie Stoffer Helps Run Calibration and Measurement Services Related to Magnetic Resonance

Spotlight: Shape-Shifting Probes Will Help Improve MRI Imaging

NIST Researchers Use Cellphone Compass to Measure Tiny Concentrations of Compounds Important for Human Health

Projects and Programs

Theory of Spin-Orbit Torque

Completed
A ferromagnetic material such as iron acquires its magnetization because the magnetic orientation of its constituent atoms all line up in the same way. Because individual electrons also have an intrinsic magnetic moment – which is often referred to as the electron “spin” - they can interact with

Nanoelectromagnetics

Ongoing
The primary goal of this program is metrology that enables advanced nanoscale device (including electronics, spintronics, and life science) development. Based on current trends in electronics, we are focusing on metrology for two classes of devices: (1) nanoscale devices utilizing and exploring new

Magnetic Imaging

Completed
Advanced magnetic devices and storage media will rely on ultra thin ferromagnetic films; since such films are quasi two-dimensional magnets, they can have strong perpendicular magnetic anisotropy (PMA). Optimization of future materials, including improved yields, requires an ability to measure film

Advanced Magnetic Imaging

Ongoing
Ultra-low field (ULF) MRI MRI systems are widely used for clinical diagnostics where imaging is typically done in high-field magnets ranging from 1.5 T to 7 T to achieve a manageable signal-to-noise ratio needed for short imaging times (few minutes) and high resolution (1 mm or less). Ultra-low