Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantum & Nonlinear Nanophotonics Group

Performs long-term basic research on microresonator frequency-combs; models, designs, fabricates, and tests integrated nonlinear photonics platforms for frequency control and synthesis; designs, fabricates, and tests integrated photonics circuits components for compact atomic clock and sensors as well as advanced microelectronics applications.

The Quantum & Nonlinear Nanophotonics group is developing advanced packaging techniques to combine photonics and electronics in support of continued scaling in digital systems. Research focuses on generation of frequency-comb lasers with integrated photonics for emerging high-speed data communication, advanced computing architectures, and signal generation across the entire microwave, millimeter wave, and terahertz bands. Combining photonics and electronics leverages the immense scalability of digital computing with the extreme bandwidth and coherence of optical signals. Energy consumption is a key performance driver in scaling data center interconnects, distributed computing architectures, and high-performance computing applications like AI. The team’s research on efficiency and system integration in multi-wavelength microresonator frequency comb laser processed on semiconductor wafers opens new opportunities for extreme information capacity.

News and Updates

Projects and Programs

Chip-scale ultraprecise laser technologies

Ongoing
Lasers with high spectral purity are used in a diverse application space, including coherent high-speed communications, physical sensing, and manipulation of quantum systems. Lab bench scale Fabry-Perot cavities based on sophisticated vibration, thermal, and atmospheric isolation have made possible

Compact strontium optical clock with integrated photonics

Ongoing
The development of a liter-scale apparatus to produce Sr, would enable highly accurate, transportable optical clocks based on their ultra-narrow optical transition. However, straightforward miniaturization of the traditional optical infrastructure necessary to implement multi-step laser cooling has

Laser-wavelength conversion with nonlinear photonics

Ongoing
Many sophisticated technologies, including detection and characterization of biological samples, quantum sensing of magnetic and electric fields, time standards based on atomic clocks, and precision metrology, demand versatile laser sources spanning a broad range of wavelengths. Nonlinear optics

Microresonator frequency combs for the NIST-on-a-Chip Program

Ongoing
The invention of optical-frequency combs opened many new applications in photonics from precision timing and ranging to generation of entangled states. They are composed of hundreds to millions of optical modes whose frequencies conform to a simple relationship, ν n = n × f rep +f 0, where n is the

Contacts

Group Leader

Staff