Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Detecting leaks in gas-filled pressure vessels using acoustic resonances

Published

Author(s)

Keith A. Gillis, Michael R. Moldover, James B. Mehl

Abstract

We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel; p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≅ -1.3×10-5 h-1 = 0.11 year-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≅ (dp/dt)/p ≅ 5×10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is time.)
Citation
Review of Scientific Instruments
Volume
87
Issue
5

Keywords

leak, leak detection, pressure vessel, acoustic resonance, resonance frequency

Citation

Gillis, K. , Moldover, M. and Mehl, J. (2016), Detecting leaks in gas-filled pressure vessels using acoustic resonances, Review of Scientific Instruments, [online], https://doi.org/10.1063/1.4948393 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created May 6, 2016, Updated November 10, 2018
Was this page helpful?