Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantum Matters in Material Science

JARVIS

NIST is closely monitoring guidance from Federal, State, and local health authorities on the outbreak of COVID-19. To protect the health and safety of NIST employees and the American public they continue to serve, NIST has decided to postpone the event. For more information on COVID-19, please visit: cdc.gov/covid19. For questions regarding existing registrations, please contact Pauline Truong, pauline.truong [at] nist.gov (pauline[dot]truong[at]nist[dot]gov) 

All materials are inherently quantum in nature but when the quantum phenomenon starts showing at the classical scale, experimentally we can leverage that for industrial applications such as superconductivity, topological insulators etc. Some of the important classes of materials used in quantum information processing (QIS) are based on a) ion-traps, b) defects, c) quantum-dot, d) Josephson-junction superconductors, and e) topological materials based. As Materials Genome Initiative has been already been successful in expediting the discovery and characterization of energy and structural materials, it's compelling to apply the same approach to quantum materials, as they have immense potential for QIS applications.To do so, it is essential to have good synergy between the experimental and the computational approaches. This workshop aims at accelerating this effort. To make the workshop as effective as possible we plan to mainly focus on inorganic superconductor and topological materials but are not limited by it. Some of the key topics to be addressed by both theory and experiments are: 1) discovery and characterization of new superconductors/topological materials, 2) optimization of known quantum materials, 3) investigation of defect induced behavior and transitions, 4) quantum memory applications, 5) challenges in applying QIS technologies at industrial scale.

Detailed webpage: https://www.ctcms.nist.gov/~knc6/qmms/QMMS2020.html 

*Visitor Access Requirement:

For Non-US Citizens:  Please have your valid passport for photo identification.

For US Permanent Residents: Please have your green card for photo identification.

For US Citizens: Please have your state-issued driver's license. Regarding Real-ID requirements, all states are in compliance or have an extension through October 2020.

NIST also accepts other forms of federally issued identification in lieu of a state-issued driver's license, such as a valid passport, passport card, DOD's Common Access Card (CAC), Veterans ID, Federal Agency HSPD-12 IDs, Military Dependents ID, Transportation Workers Identification Credential (TWIC), and TSA Trusted Traveler ID. 

Created January 13, 2020, Updated March 20, 2020