NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Programmable assembly of three-dimensional binary superlattices from multi-flavored DNA- functionalized particles
Published
Author(s)
Evan Pretti, Hasan Zerze, Minseok Song, Yajun Ding, Nathan Mahynski, Harold Hatch, Vincent K. Shen, Jeetain Mittal
Abstract
Programmable self-assembly of nano- or micron-sized colloidal particles can be achieved by grafting single- stranded DNA sequences onto the surfaces of colloids. However, this assembly is traditionally premised on the pairwise interaction between a single DNA sequence and its complement, and often relies on particle size asymmetry to entropically control the crystalline arrangement of its constituents. Using computational methods, we elucidate purely enthalpic design rules based on tuning interparticle interaction strengths between equally sized particles. In practice, these systems can be experimentally realized by exploiting the recently proposed "multi-flavoring" motif for DNA functionalization. In this scheme, multiple distinct DNA sequences are grafted to the surfaces of colloids in different proportions, which enables the independent tuning of interactions between like and unlike particles in binary systems. By tuning only the interactions between like particles, while keeping the unlike-particle interactions fixed, we demonstrate rational assembly into various morphologies. Additionally, we show how the composition of binary crystals changes as a function of one of the like-pair binding strengths, and how their structures can be tuned by controlling the solution stoichiometry.
Pretti, E.
, Zerze, H.
, Song, M.
, Ding, Y.
, Mahynski, N.
, Hatch, H.
, Shen, V.
and Mittal, J.
(2018),
Programmable assembly of three-dimensional binary superlattices from multi-flavored DNA- functionalized particles, Soft Matter, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=925282
(Accessed October 11, 2025)