Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

2022 RMS Scientific Achievement Award - Andrea Centrone

Andrea Centrone

Andrea Centrone

Credit: NIST

Andrea is an exceptional scientist whose work has contributed to overcoming one of the main shortcomings of atomic force microscopy (AFM) – its inability to conclusively identify chemical species in the nanoscale resolution maps the AFM provides.

He was one of the first scientists to appreciate the potential of combining the infrared spectroscopy – the gold standard for chemical and materials identification – with the nanoscale resolution AFM.

Andrea’s developments in nanoscale microscopy include the photothermal induced resonance (PTIR) and scanning thermal infrared microscopy (STIRM) techniques. Particularly the introduction of ground-breaking optomechanical nanophotonic probes by his group, has allowed increasing the throughput of the chemically sensitive PTIR method by ≈500,000 times and has enabled concurrent measurement of the sample’s thermal conductivity.

The research group he established in the National Institutes of Standards and Technology in 2010, became a world leader in chemically sensitive AFM. It has made large impact across material science and biotechnology, bringing in multiple international collaborations and exploiting the unique capabilities unlocked by the novel microscopy methodology developed by Andrea.

Andrea’s research led to new understanding of the fundamental properties of perovskites solar cells, metal organic frameworks, and plasmonic materials and has identified and greatly reduced nanoscale contaminants hindering the performance of 2D materials heterostructures, among others. He also contributed to the development of new nanoparticle sensors for detection and treatment of cancer, and to the understanding of proteins folding into linear structures linked to diseases such as Alzheimer’s.

Andrea has been prolific in both the development of novel scanning probe methodologies, and in their use to address fundamental scientific and applied questions.

Contact

Created September 30, 2022