Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Deep Reinforcement Learning-based Task Assignment for Cooperative Mobile Edge Computing

Published

Author(s)

Li-Tse Hsieh, Hang Liu, Yang Guo, Robert Gazda

Abstract

Mobile edge computing (MEC) integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. This paper investigates the task assignment problem for cooperative MEC networks in which a set of geographically distributed heterogeneous edge servers not only cooperate with remote cloud data centers but also help each other to jointly process user tasks. We introduce a novel stochastic MEC cooperation framework to model the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment optimization problem is formulated by taking into consideration dynamic network states, uncertain node computing capabilities and task arrivals, as well as the heterogeneity of the involved entities. We then develop and compare three task assignment algorithms, based on different deep reinforcement learning (DRL) approaches, value-based, policy-based, and hybrid approaches. In addition, to reduce the search space and computation complexity of the algorithms, we propose decomposition and function approximation techniques by leveraging the structure of the underlying problem. The evaluation results show that the proposed DRL-based task assignment schemes outperform the existing algorithms, and the hybrid actor-critic scheme performs the best under dynamic MEC network environments.
Citation
IEEE Transactions on Mobile Computing
Volume
23
Issue
4

Keywords

Mobile edge computing (MEC), edge server cooperation, task assignment, stochastic optimization, deep reinforcement learning

Citation

Hsieh, L. , Liu, H. , Guo, Y. and Gazda, R. (2022), Deep Reinforcement Learning-based Task Assignment for Cooperative Mobile Edge Computing, IEEE Transactions on Mobile Computing, [online], https://doi.org/10.1109/TMC.2023.3270242, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934260 (Accessed December 21, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created April 25, 2022, Updated May 14, 2024