Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Microstructure and Properties of Co-Ni-Al-W Gamma/Gamma Prime Superalloy Fabricated via Laser Fusion of Elemental Powders

Published

Author(s)

Hyeji Im, Júlio Cesar Pereira Dos Santos, Carelyn E. Campbell, David Dunand

Abstract

Ball-milled elemental Co, Ni, Al, and W powders were used to fabricate a Co-0.20Ni-0.11Al-0.08W (mole fraction) alloy via laser powder bed fusion (L-PBF). In the as-fused state, microstructural features present within the FCC-γ Co-Ni-Al-W matrix – partially-melted W powders, W-deficient regions, and cracks – are investigated with respect to the laser scanning speed. Tungsten particles appear to block or deflect internal cracks, thus improving cracking resistance due to thermal cycling during laser fusion. However, W-deficient regions, which are also enriched with Ni and Al, can act as crack nucleation sites due to the brittleness of the β-NiAl and eutectic microconstituents. A homogenous FCC-γ Co-0.20Ni-0.11Al-0.08W (mole fraction) solid solution is obtained after a solutionizing treatment at 1200 ºC, as W-rich particles fully dissolve, and W-deficient regions homogenize, into the matrix. A γ/γ'-two-phase microstructure forms upon subsequent aging at 900 ºC, whose creep resistance is measured at 850 °C: below 300 MPa, deformation is dominated by diffusional creep (consistent with a relatively fine grain size of 50 μm to 100 μm) while above 300 MPa, it is controlled by dislocation creep. Using elemental powder blends is a viable method to create microstructurally-sound, creep-resistant Co-based γ/γ' superalloys via L-PBF.
Citation
Additive Manufacturing

Keywords

Co-based superalloy, selective laser melting, microstructure, cracking, creep resistance

Citation

Im, H. , Pereira Dos Santos, J. , Campbell, C. and Dunand, D. (2023), Microstructure and Properties of Co-Ni-Al-W Gamma/Gamma Prime Superalloy Fabricated via Laser Fusion of Elemental Powders, Additive Manufacturing, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936789 (Accessed October 7, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created August 8, 2023, Updated March 11, 2024
Was this page helpful?