NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The Block Copolymer Database (BCDB) is a platform that allows users to search, submit, visualize, benchmark, and download experimental phase measurements and their associated characterization information for di- and multiblock copolymers. To the best of our knowledge, there is no widely accepted data model for publishing experimental and simulation data on block copolymer self-assembly. This proposed data schema with traceable information can accommodate any number of blocks and at the time of publication contains over 5400 block copolymer total melt phase measurements mined from the literature and manually curated and simulation data points of the phase diagram generated from self-consistent field theory that can rapidly be augmented. This database can be accessed via the Community Resource for Innovation in Polymer Technology (CRIPT) web application and the Materials Data Facility. The chemical structure of the polymer is encoded in BigSMILES, an extension of the Simplified Molecular-Input Line-Entry System (SMILES) into the macromolecular domain, and the user can search repeat units and functional groups using the SMARTS search syntax (SMILES Arbitrary Target Specification). The user can also query characterization and phase information using Structured Query Language (SQL) and download custom sets of block copolymer data to train machine learning models. Finally, a protocol is presented in which GPT-4, an AI-powered large language model, can be used to rapidly screen and identify block copolymer papers from the literature using only the abstract text and determine whether they have BCDB data, allowing the database to grow as the number of published papers on the World Wide Web increases. The F1 score for this model is 0.74. This platform is an important step in making polymer data more accessible to the broader community.
Rebello, N.
, Arora, A.
, Mochigase, H.
, Lin, T.
, Audus, D.
and Olsen, B.
(2024),
The Block Copolymer Phase Behavior Database, Journal of Chemical Information and Modeling, [online], https://doi.org/10.1021/acs.jcim.4c00242, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932169
(Accessed October 14, 2025)