NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Measurements for the Development of Simulated Naturally Occurring Radioactive Materials
Published
Author(s)
Leticia S. Pibida
Abstract
Nineteen different commercially available samples containing naturally occurring radioactive materials (NORM) (i.e., natural uranium, thorium, radium and potassium) were investigated, including zircon sand, cat litter, roofing tiles, ice melt and fertilizer among others. A large variation in isotopic composition was observed across the measured samples. As a result of this observation, a need was identified to develop and implement the use of a simulated NORM sample to serve as a reference standard sample containing naturally occurring radioactive elements. The purpose of the simulated NORM sample would be to simulate typical samples containing NORM to be used for testing radiation detection instruments against ANSI/IEEE and IEC document standards requirements. The design and construction of the proposed new simulated NORM sample and the subsequent energy spectra characterization measurements are presented as part of this work.
Pibida, L.
(2012),
Measurements for the Development of Simulated Naturally Occurring Radioactive Materials, Journal of Research (NIST JRES), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/jres.117.008r2012
(Accessed October 10, 2025)