NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Digital Circuits Using Self-Shunted Nb/NbxSi1-x/Nb Josephson Junctions
Published
Author(s)
David I. Olaya, Paul Dresselhaus, Samuel Benz, Anna Herr, Quentin Herr, alex Ioannidis, Donald Miller, Alan Kleinsasser
Abstract
For the first time superconducting digital circuits based on novel Josephson junctions with amorphous niobium-silicon (a-NbSi) barriers were designed, fabricated and tested. Compared with the resistively shunted aluminum-oxide-barrier junctions that are typically used for such circuits, the self-shunted nature of a-NbSi junctions enabled a two-fold increase in circuit density, while the relatively thick 10 nm barriers could potentially increase the circuit yield. Measurements were performed on a single-ux-quantum shift register and a static digital divider. The shift register operated with +-30 % bias margins, con rming reproducibility and uniformity of the junctions. The divider operated up to 165 GHz for a single value of bias current, which was only marginally less than that of a similar circuit fabricated with externally shunted AlOx tunnel-barrier junctions having a comparable 4.5 kA/cm2 critical current density.
Olaya, D.
, Dresselhaus, P.
, Benz, S.
, Herr, A.
, Herr, Q.
, Ioannidis, A.
, Miller, D.
and Kleinsasser, A.
(2010),
Digital Circuits Using Self-Shunted Nb/NbxSi1-x/Nb Josephson Junctions, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904889
(Accessed October 9, 2025)