Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

In-situ conductance characterization of Fe/Ag multilayer contacts on GaAs

Published

Author(s)

Dustin Hite, Stephen E. Russek, David P. Pappas

Abstract

Electrical transport characteristics for epitaxially grown Ag/Fe/Ag multilayers on GaAs(100) and GaAs(110) have been studied under various growth conditions. The surfaces and structure of the multilayer were characterized by low energy electron diffraction and angle-resolved Auger electron spectroscopy/diffraction at all stages of the growth. In-situ conductance spectroscopy performed between growth steps indicates a strong dependence on the morphology at the metal/semiconductor interface. A nanoclustered Ag overlayer exhibits a reverse current due to defect states in the discontinuous film; however, annealed, continuous Ag overlayers on GaAs behave as a uniform rectifying diode. After completion of the magnetic multilayer growth, current-voltage characteristics indicate a sharp turn-on in the reverse current at 0.6 V with non-linear behavior. This is characteristic of electron tunneling through the Schottky barrier from the multilayer contact into the semiconductor. The implementation of these magnetic multilayer contacts for electrical spin injection is discussed.
Citation
Journal of Applied Physics
Volume
94
Issue
1

Keywords

conductance spectroscopy, Schottky barrier, spin electronics

Citation

Hite, D. , Russek, S. and Pappas, D. (2003), In-situ conductance characterization of Fe/Ag multilayer contacts on GaAs, Journal of Applied Physics (Accessed December 26, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created June 30, 2003, Updated October 12, 2021