Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform

Published

Author(s)

Elizabeth Mirowski, John M. Moreland, Arthur Zhang, Stephen E. Russek, Michael J. Donahue

Abstract

We have integrated a microfluidic magnetic trap platform with an external magnetic force microscope (MFM) cantilever. The MFM cantilever tip serves as a magnetorobotic arm that provides a translatable local magnetic field gradient to capture and move magnetic particles with nanometer precision. The MFM electronics have been programmed to sort an initially random distribution of particles by moving them within an array of magnetic trapping elements. We measured the maximum velocity at which the particles can be translated to be 2.2 mm/s±0.1 mm/s, which can potentially permit a sorting rate of approximately 5500 particles/min. We determined a magnetic force of 35.3±2.0 pN acting on a 1 υm diameter particle by measuring the hydrodynamic drag force necessary to free the particle. Release of the particles from the MFM tip is made possible by a nitride membrane that separates the arm and magnetic trap elements from the particle solution. This platform has potential applications for magnetic-based sorting, manipulation, and probing of biological molecules in a constant-displacement or a constant-force mode.
Citation
Applied Physics Letters
Volume
86

Keywords

Magnetic Force Microscope, Magnetic Tweezer, Manipulation, Microfluidic, Sorting

Citation

Mirowski, E. , Moreland, J. , Zhang, A. , Russek, S. and Donahue, M. (2005), Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=31841 (Accessed January 2, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created June 30, 2005, Updated October 12, 2021