Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Patents by David Long

Patents listed here reflect only technologies patented from FY 2018-present. To view all of NIST's patented technologies, visit the NIST pages on the Federal Laboratory Consortium website.

Displaying 1 - 4 of 4

Serrodyne Frequency Shift Spectrometer and Serrodyne Frequency Shifting

NIST Inventors
Sean Bresler , John R. Lawall , Benjamin Reschovsky and David Long
Direct multiheterodyne or self-heterodyne frequency comb spectroscopy commonly relies upon the use of an acousto-optic modulator to provide a frequency shift of the resulting radiofrequency interferogram. We have shown that serrodyne modulation can provide this shift, resulting in a significant

Direct Digital Chirp Synthesizer And Generating A Chirped Optical Frequency Comb

NIST Inventors
David Long and Benjamin Reschovsky
Disclosed is a direct digital chirp synthesizer for generating a chirped optical frequency comb that includes: a direct digital synthesizer that receives a repetition frequency signal from a delay generator, receives a clock frequency from a frequency converter, produces a radiofrequency chirp

Optomechanical Ultrasound Detector And Performing Ultrasound Imaging

NIST Inventors
David Long , Thomas W. LeBrun and Jason J. Gorman
An optomechanical ultrasound detector includes: a micromirror substrate; a mechanical resonator that receives ultrasound waves, oscillates at resonator frequency f.sub.r, changes cavity length L.sub.c, and produces intra-cavity light; and an optical microcavity between the micromirror substrate and

Optomechanical Accelerometer And Performing Optomechanical Accelerometry

NIST Inventors
Jason J. Gorman , Thomas W. LeBrun and David Long
An optomechanical accelerometer includes: a fiducial mass for a microscale Fabry-Perot optical cavity; a proof mass for the microscale Fabry-Perot optical cavity, such that the proof mass oscillates in a displacement motion toward and away from the fiducial mass in response to acceleration of the