A non-vacuum, non-contact spinner wafer chuck including: a basal member including; a fastener receiver that receives a fastener; a chuck collar including: an inner collar wall; and an outer collar wall; and an engagement surface that: receives and engages a wafer; a wafer engagement cam including: an engagement face that engages the wafer; an index cam disposed on the chuck collar and comprising: an index face that faces toward the fastener receiver and that engages the wafer; and a spinner engager disposed on the spinner-side surface of the basal member and comprising: a spinner arm receiver bounded by a wall and that receives a spinner of the wafer processing machine, wherein the wafer engagement cam and the index cam engage the wafer and maintains an orientation of the wafer with respect to the index cam in response to rotation of the wafer relative to the non-vacuum, non-contact spinner wafer chuck.
Disclosed is a non-vacuum, non-contact spinner wafer chuck for receiving and indexing a wafer, the non-vacuum, non-contact spinner wafer chuck comprising: a basal member comprising: a wafer-side surface; and a spinner-side surface opposing the wafer-side surface; a fastener receiver disposed in the basal member and bounded by a receiver wall and that receives a fastener that fastens the non-vacuum, non-contact spinner wafer chuck to a wafer processing machine; a chuck collar disposed on the basal member and comprising: an inner collar wall that intersects the basal member at the wafer-side surface; and an outer collar wall opposing the inner collar wall; and an engagement surface that: receives and engages a wafer; and is interposed between the inner collar wall and the outer collar wall; a wafer engagement cam disposed on the chuck collar and comprising: an engagement face that faces toward the fastener receiver and that engages the wafer; an index cam disposed on the chuck collar and comprising: an index face that faces toward the fastener receiver and that engages the wafer, and a spinner engager disposed on the spinner-side surface of the basal member and comprising: a spinner arm receiver bounded by a wall and that receives a spinner of the wafer processing machine, wherein the wafer engagement cam and the index cam engage the wafer and maintains an orientation of the wafer with respect to the index cam in response to rotation of the wafer relative to the non-vacuum, non-contact spinner wafer chuck.
Disclosed is a process for processing a wafer with a non-vacuum, non-contact spinner wafer chuck, the process comprising: disposing the non-vacuum, non-contact spinner wafer chuck on the wafer processing machine; receiving the spinner by the spinner engager; disposing the wafer on the non-vacuum, non-contact spinner wafer chuck; rotating the non-vacuum, non-contact spinner wafer chuck relative to the wafer processing machine with the spinner; engaging, by the wafer engagement cam and the index cam, the wafer and maintaining, by the wafer engagement cam and the index cam, the orientation of the wafer with respect to the index cam in response to rotating the non-vacuum, non-contact spinner wafer chuck relative to the wafer processing machine to process the wafer.
This design allows a standard spinner unit to be used to now provide self -alignment, non-vacuum interface to wafer and Non-contact to center region of wafer.