A SI-traceable Rydberg atom radiofrequency power meter determines power of reference radiofrequency radiation and includes: a reference radiofrequency source that provides reference radiofrequency radiation; a vapor cell including: a pair of parallel-plate waveguides; a vapor cell wall including parallel opposing faces of the parallel-plate waveguides; and the vapor space physically bounded by the vapor cell wall to contain gas atoms in an optical overlap volume; and a transmission detector that receives the output light from the vapor cell and produces a transmission signal from the transmission detector for determination of power of the reference radiofrequency radiation, wherein the SI-traceable Rydberg atom radiofrequency power meter determines power of the reference radiofrequency radiation by electromagnetically induced transparency of the gas atoms in a Rydberg electronic state, the determination of power being traceable to the International System of Units (SI).
(1) Disclosed is an SI-traceable Rydberg atom radiofrequency power meter for determining power of reference radiofrequency radiation comprising: a reference radiofrequency source that provides reference radiofrequency radiation; a vapor cell comprising: a pair of parallel-plate waveguides, the parallel-plate waveguides opposing one another and spaced by apart a vapor space such that the parallel-plate waveguides are parallel to each other for propagation of the reference radiofrequency radiation through the vapor space; a vapor cell wall comprising parallel opposing faces of the parallel-plate waveguides; and the vapor space physically bounded by the vapor cell wall to contain gas atoms in an optical overlap volume, such that the vapor cell: receives gas atoms in the vapor space; receives the reference radiofrequency radiation, such that the gas atoms are subjected to the reference radiofrequency radiation; and produces output light by the gas atoms in response to subjecting the gas atoms to the reference radiofrequency radiation, probe light, and coupling light; and a transmission detector that receives the output light from the vapor cell and produces a transmission signal from the transmission detector for determination of power of the reference radiofrequency radiation, wherein the SI-traceable Rydberg atom radiofrequency power meter determines power of the reference radiofrequency radiation by electromagnetically induced transparency of the gas atoms in a Rydberg electronic state, the determination of power being traceable to the International System of Units (SI).
(2) Disclosed is a process for determining power of reference radiofrequency radiation with the SI-traceable Rydberg atom radiofrequency power meter, the process comprising: disposing gas atoms in the vapor space; receiving, by the vapor cell, the reference radiofrequency radiation; exciting the gas atoms to a Rydberg electronic state; subjecting the gas atoms in the Rydberg electronic state to the reference radiofrequency radiation; producing output light by the gas atoms in response to being subjected to the reference radiofrequency radiation while in the Rydberg electronic state; receiving, by the transmission detector, the output light from the vapor cell; producing, by the transmission detector, the transmission signal; and determining power of the modulated carrier radiation from the transmission signal, such that the determination of power is traceable to the SI.