An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
https://www.nist.gov/people/brian-kirby
Brian Kirby (Fed)
Group Leader, Research Facility Operations, NCNR
Research Interests:
Advanced neutron scattering techniques
Magnetic multilayers and thin films
Magnetic property localization in nanostructured materials
Electric field control of magnetism
Magnetism at complex oxide interfaces
Awards
2012 NIST Bronze Medal, "For the elucidation of complex magnetic coupling in ferromagnetic, semiconducting multilayers using innovative polarized neutron reflectivity methods"
Brian J. Kirby, H. F. Belliveau, D. D. Belyea, Paul A. Kienzle, Alexander J. Grutter, P. Riego, A. Berger, Casey W. Miller
A combination of experiments and numerical modeling was used to study the spacial evolution of the ferromagnetic phase transition in a thin film engineered to
Nathan Arndt, Eitan Hershkovitz, Labdhi Shah, Kristoffer Kjaernes, Chao-Yao Yang, Purnima Balakrishnan, Mohammed Shariff, Shaun Tauro, Daniel Gopman, Brian Kirby, Alexander Grutter, Thomas Tybell, Honggyu Kim, Ryan Need
The effect of oxygen reduction on the magnetic properties of LaFeO3−δ (LFO) thin films was studied to better understand the viability of LFO as a candidate for
John Dewey, Vipul Chaturvedi, Tatiana Webb, Prachi Sharma, William Postiglione, P. Quarterman, Purnima Balakrishnan, Brian Kirby, Lucca Figari, Caroline Korostynski, Andrew Jacobson, Turan Birol, Rafael Fernandes, Abhay Pasupathy, Chris Leighton
Pr-containing perovskite cobaltites exhibit unusual valence transitions, coupled to coincident structural, spin-state, and metal-insulator transitions
Sehwan Song, Jiwoong Kim, Jisung Lee, Hyegyeong Kim, Noboru Miyata, Neeraj Kumar, Y. Soh, Jae H. Jang, Chanyong Hwang, Brian Kirby, Sungkyun Park
FeRh films, known as antiferromagnetic material at low temperature, exhibit unexpected ferromagnetic (FM) characteristics, unlike bulk. Detailed temperature