Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Carl D. Reintsema (Fed)

Publications

Most stringent bound on electron neutrino mass obtained with a scalable low temperature microcalorimeter array

Author(s)
Bradley Alpert, Daniel Becker, Douglas Bennett, Joseph Fowler, Johnathon Gard, John Mates, Carl Reintsema, Daniel Schmidt, Daniel Swetz, Joel Ullom, Leila Vale, M. Balata, S. Nisii, A. Bevilacqua, M. De Gerone, G. Gallucci, L. Parodi, F. Siccardi, A. Borghesi, P. Campana, R. Carobene, M. Faverzani, A. Giachero, M. Gobbo, D. Labrbca, R. Morette, A. Nuciotti, L. Origo, S. Ragazzi, G. Ceruti, E. Ferri, G. Pessina, E. Celasco, F. Gatti, R. Dressler, E. Maugeri, D. Schumann, U Koster, M. Lusignoli, P. Manfrinetti, F Ahrens, E Bogini, M. Borghesi, P. Campana, R. Carbene, L. Ferrari Barusso, E. Ferri, G. Gallucci
The determination of the absolute neutrino mass scale remains a fundamental open question in particle physics, with profound implications for both the standard

EMI susceptibility of a differential time-division SQUID multiplexing circuit for TES readout

Author(s)
Malcolm Durkin, Douglas Bennett, William Doriese, Johnathon Gard, Johannes Hubmayr, Richard Lew, Erin Maloney, Carl Reintsema, Robinjeet Singh, Daniel Schmidt, Joel Ullom, Leila Vale, Michael Vissers
Time Division multiplexing (TDM) using superconducting quantum interference devices (SQUIDs) is being developed to read out Transition-edge sensor arrays for

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high

Patents (2018-Present)

X-Ray Spectrometer

X-Ray Spectrometer

NIST Inventors
Kevin L. Silverman , Carl D. Reintsema , Galen O'Neil , Luis Miaja Avila , Daniel Swetz , W.Bertrand (Randy) Doriese , Dan Schmidt , Bradley Alpert , Joseph Fowler , Joel Ullom and Ralph Jimenez
This invention includes: an x-ray plasma source that produces primary x-rays; an x-ray optic that transmits and focuses the primary x-ray onto a sample jet from which fluorescence x-ray are emitted; and a microcalorimeter array detector that measures the energy of the incoming fluorescence x-rays
Created October 9, 2019, Updated October 11, 2023
Was this page helpful?