Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

David Cooper (Fed)

Publications

Status Report on the Fourth Round of the NIST Post-Quantum Cryptography Standardization Process

Author(s)
Gorjan Alagic, Maxime Bros, Pierre Ciadoux, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Hamilton Silberg, Daniel Smith-Tone, Noah Waller
The National Institute of Standards and Technology is selecting public-key cryptographic algorithms through a public, competition-like process. The new public

Status Report on the First Round of the Additional Digital Signature Schemes for the NIST Post-Quantum Cryptography Standardization Process

Author(s)
Gorjan Alagic, Maxime Bros, Pierre Ciadoux, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey, Jacob Lichtinger, Carl A. Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Hamilton Silberg, Daniel Smith-Tone, Noah Waller, Yi-Kai Liu
The National Institute of Standards and Technology is in the process of evaluating public-key digital signature algorithms through a public competition-like

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process

Author(s)
Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-Tone
The National Institute of Standards and Technology is in the process of selecting public-key cryptographic algorithms through a public, competition-like process

Breaking Category Five SPHINCS+ with SHA-256

Author(s)
Ray Perlner, David Cooper, John M. Kelsey
SPHINCS+ is a stateless hash-based signature scheme and a finalist in the NIST PQC standardization process. Its security proof relies on the distinct-function

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process

Author(s)
Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-Tone, Daniel Apon
The National Institute of Standards and Technology is in the process of selecting public-key cryptographic algorithms through a public, competition-like process
Created May 21, 2019, Updated December 8, 2022