Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Nathan Ortiz (Fed)

My primary focus is mechanical engineering with cryogenic and vacuum systems. I support multiple large projects with planning, design, fabrication and assembly. The items that I design and assemble range from large fully adjustable refrigerator stands with 6 degrees of freedom to very small precision tooling. One project that I am heavily involved with is the design and construction of cryogenic testing platforms for the Athena x-ray satellite mission. In addition, I have made significant contributions to the IARPA RAVEN project as well as the Idaho National Laboratory gamma-ray spectrometer. I track a growing list of custom designed cryogenic components and maintain detailed documentation on these parts. These documents include the manufacturing specifications for the modular TES detector packaging solution known as the microsnout. Microsnouts are currently deployed in several cryogenic systems and are planned for use with upcoming spectroscopic instruments.

Publications

Effects of Stray Magnetic Field on Transition-edge Sensors in Gamma-ray Microcalorimeters

Author(s)
Mark Keller, Abigail Wessels, Dan Becker, Douglas Bennett, Matthew Carpenter, Mark Croce, Jozsef Imrek, Johnathon Gard, John Mates, Kelsey Morgan, Nathan Ortiz, Dan Schmidt, Katherine Schreiber, Daniel Swetz, Joel Ullom
Superconducting transition-edge sensors (TESs) used in x-ray and γ-ray microcalorimeters suffer degraded performance if cooled in a magnetic field B sufficient

A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray

Author(s)
Paul Szypryt, Nathan J. Nakamura, Dan Becker, Douglas Bennett, Amber L. Dagel, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, J. Zachariah Harris, Gene C. Hilton, Jozsef Imrek, Edward S. Jimenez, Kurt W. Larson, Zachary H. Levine, John Mates, Daniel McArthur, Luis Miaja Avila, Kelsey Morgan, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Dan Schmidt, Kyle R. Thompson, Joel Ullom, Leila R. Vale, Michael Vissers, Christopher Walker, Joel Weber, Abigail Wessels, Jason W. Wheeler, Daniel Swetz
We report on the 1,000-element transition-edge sensor (TES) x-ray spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT). TOMCAT combines

Design of a 3000 pixel transition-edge sensor x-ray spectrometer for microcircuit tomography

Author(s)
Paul Szypryt, Douglas Bennett, William J. Boone, Amber L. Dagel, G Dalton, William Doriese, Malcolm Durkin, Joseph Fowler, Edward Garboczi, Jonathon D. Gard, Gene Hilton, Jozsef Imrek, E S. Jimenez, Vincent Y. Kotsubo, K Larson, Zachary H. Levine, John Mates, D McArthur, Kelsey Morgan, Nathan J. Nakamura, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Carl Reintsema, Dan Schmidt, Daniel Swetz, K R. Thompson, Joel Ullom, C Walker, Joel C. Weber, Abigail Wessels, J W. Wheeler
Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex

Improved plutonium and americium photon branching ratios from microcalorimeter gamma spectroscopy

Author(s)
M. D. Yoho, K. E. Koehler, Dan Becker, Douglas Bennett, M. H. Carpenter, M. P. Croce, J. D. Gard, John Mates, D. J. Mercer, Nathan Ortiz, Dan Schmidt, C. M. Smith, Daniel Swetz, A. D. Tollefson, Joel Ullom, Leila R. Vale, Abigail Wessels, D. T. Vo
Photon branching ratios are critical input data for activities such as nuclear materials protection and accounting because they allow material compositions to

A Predictive Control Algorithm for Time-Division-Multiplexed Readout of TES Microcalorimeters

Author(s)
Malcolm S. Durkin, Galen C. O'Neil, William B. Doriese, Johnathon D. Gard, Gene C. Hilton, Jozsef Imrek, Nathan J. Ortiz, Carl D. Reintsema, Robert W. Stevens, Daniel S. Swetz, Joel N. Ullom
Time division multiplexing (TDM) uses a digital flux-locked loop (DFLL) to linearize each first-stage SQUID amplifier. Presently, the dynamic range of our TDM
Created July 19, 2018, Updated October 11, 2023