An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Noah Schlossberger, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Samuel Berweger, Matthew Simons, William Watterson, Dangka Shylla, Christopher Holloway
Highly excited states of alkali atoms are a powerful tool for making SI-traceable electric field measurements without the need for an external reference
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large
Samuel Berweger, Alexandra Artusio-Glimpse, Nikunjkumar Prajapati, Andrew Rotunno, Noah Schlossberger, Dangka Shylla, kaitlin moore, Matthew Simons, Christopher Holloway
Rydberg atom-based electric field sensing can provide all-optical readout of radio frequency fields in a dielectric environment. However, because a single set
Aly Artusio-Glimpse, David Long, Sean Bresler, Nik Prajapati, Dangka Shylla, Andrew Rotunno, Matt Simons, Samuel Berweger, Noah Schlossberger, Thomas W. LeBrun, Christopher L. Holloway
We show that the use of a probe optical frequency comb leads to dramatically improved bandwidth (as high as 12+/-1 MHz) for the detection of modulated radio