Materials for energy applications (including energy conversion materials for thermoelectric and photocatalysis, and energy storage).
(Research opportunity No. 50.64.31.B6767)
The energy crisis has spurred intensive research activities in energy conversion and storage materials. For example, recent improvements in thermoelectric conversion efficiency have made thermoelectric materials attractive to the automotive industry for waste heat recovery applications, as well as in the environmental area for reliable solid-state refrigeration. Batteries have experienced fast-growing interest driven by new demands from a wide spectrum of applications. Specific research opportunities include (1) crystal structure and property relationships and measurements of novel thermoelectric and battery materials (Seebeeck coefficient, electrical resistivity, and thermal conductivity for thermoelectrics, and ionic conductivity for solid-state battery materials), (2) development of standard reference materials for battery material measurements, (3) deposition of combinatorial thin film libraries using a state-of-the-art sputtering/pulsed laser tool, (4) utilization of NIST first-in-world high-throughput techniques for mapping Seebeck coefficient and electricity resistivity for thermoelectrics. Plans are being developed for mapping ionic conductivity of solid-state electrolytes for battery applications, (5) understanding of battery degradation mechanisms. The thermoelectric and battery materials of interest include thin films, single crystals, and bulk materials. Opportunities also exist to investigate other materials and develop additional high-throughput methods for photovoltaics and photocatalysis for sustainable energy applications.
For more information...
(Research opportunity No. 50.64.31.B7417)
Many industrial processes generate carbon dioxide as a by-product, which is released to the atmosphere and contributes to global warming. To address the increasing urgency of mitigating global warming, clean, low-carbon-dioxide emission technologies must be complemented with more aggressive carbon capture technologies, including those for the direct air capture (DAC) of carbon dioxide, and its permanent mineralization or sequestration through appropriate carbonation processes. Development of these technologies is critical to meet U.S. energy and manufacturing needs in an environmentally sustainable manner. Low carbon emission and direct carbon capture technologies depend on transient gas/solid material interactions. Such interactions cannot be inferred from initial or final state materials property measurements such as sorbent microstructure, but must be measured in situ during the sorption or release process. This project focuses on the design, construction, and application of a suite of in situ measurement platforms for use with NIST’s state-of-the-art neutron and synchrotron X-ray scattering facilities [1], capable of interrogating critical carbon capture properties across the range of candidate carbon dioxide sorbent solid materials, as well as candidate materials, both natural and fabricated, for final mineralization or sequestration of carbon dioxide through carbonation. Measurements will focus on in situ determination of changes in structure, microstructure, atomic bonding, and dynamics in sorbent materials during the sorption and release of carbon dioxide under controlled conditions of temperature, pressure, humidity, and atmosphere, or in the case of mineralization as a function of carbonation reaction. Where possible, X-ray or neutron diffraction abd scattering analysis [2] and thermogravimetric analysis will be carried out in situ with samples that are simultaneously undergoing evolved gas analysis. The experimental measurements will be complemented by computer model simulations using available capabilities based on methods such as density functional theory (DFT). [3]
For more information...
(1) American Ceramic Society (ACerS)
(2) American Crystallographic Association (ACA)
(3) US National Committee for Crystallography (USNC/Cr)
(4) International Centre for Diffraction Data (ICDD)
(5) Applied Superconductivity Conference (ASC)
(6) Boise State University
Publications: (> 360 scientific papers including 7 book chapters and 1 handbook chapter)
Significant contributions from the above record are a collection of phase diagrams of complex multi-component ceramic systems and crystal structures for materials processing; structure and property correlations of materials for electronic, energy, and carbon mitigation applications; standard reference data and materials for phase analysis and instrument calibration; modeling work for understanding materials behaviors; and high throughput thin film screening techniques for novel materials discovery.