The performance of fire fighting equipment and gear is critical for the safety and effectiveness of fire fighters. Current equipment standards and test methods do not adequately address the challenges of operating fire fighter equipment in high temperature environments. This project provides scientific research to characterize the performance of fire fighter equipment at elevated temperatures and develop performance criteria and test methods that are representative of fire fighter equipment performance in realistic fire environments. This project focuses on the performance of fire fighter self-contained breathing apparatus (SCBA), and fire fighter electronic equipment, including portable radios. The knowledge gained will be transferred to the fire service and to standards organizations to support the development of standards for the performance of fire fighter equipment under high temperature conditions. Improved standards will increase the safety and performance of fire fighter equipment, resulting in improved safety and effectiveness of fire fighters.
OBJECTIVE:
To improve the safety and effectiveness of fire fighters by developing science-based standard test methods that characterize the performance of fire fighting equipment and gear under fire environment conditions.
TECHNICAL IDEA:
This project aims to improve the performance of fire fighter equipment and gear by providing experimental data to develop standards that take into account realistic fire fighting temperature conditions. Previous work has shown that fire fighter gear and equipment may not perform well at the elevated temperatures encountered during firefighting activities. Current test methods and standards do not adequately address the challenges of operating in high temperature environments. This project will include experiments to measure the performance of fire fighter equipment using controlled, repeatable, well characterized test methods to develop scientifically based performance criteria and standards. As technology advances, fire fighting equipment is moving towards incorporating better materials and new tools and devices into the protective equipment. Some SCBA systems incorporate electronic heads-up displays that indicate the status of the gear, while others are working towards incorporating radios and other communication systems into the SCBA. Devices that provide thermal imaging, temperature, heat flux, fire fighter body statistics, location information, and other situational awareness tools are available or in development. The thermal performance of these devices must be understood, and test methods must be developed to measure the performance of the gear in high temperature environments. The test methods should provide a consistent thermal exposure indicative of the fire fighter duty environment, so that various pieces of gear provide appropriate levels of performance and protection. This area of research is a strategic focus of the Fire Research Division’s Strategic Roadmap[1].
RESEARCH PLAN:
This project will focus on the thermal performance of fire fighter equipment in high temperature environments for self contained breathing apparatus (SCBA), and fire fighter electronic equipment including portable radios. The research plan consists of determining the appropriate metrics for performance evaluation, conducting experiments to determine equipment performance, and developing performance criteria and test methods for use in standards. Previous research suggests that fire environment temperatures and heat flux are key performance parameters. Whereas large scale fire experiments are useful for studying the performance of gear and are especially valuable for capturing three dimensional effects, they are typically unsatisfactory for product acceptance testing. Instead, repeatable and controlled laboratory scale test procedures will be developed to measure the equipment thermal performance. Work with the SCBA equipment will compare high temperature performance of fire fighter SCBA facepieces meeting the new requirements of the National Fire Protection Association (NFPA) 1981 Standard on SCBA for Emergency Services, 2013 edition, with legacy SCBA facepieces. The new requirements were developed based on work previously completed as part of this project. Work on fire fighter electronic equipment will focus on high temperature performance of speaker microphone accessories for fire fighter portable radios. Results will be supplied to NFPA for use with the development of NFPA 1802 Standard on Personal Portable Two way Radio Communications Devices.