Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Point and Shoot Face Recognition Challenge (PaSC)

Summary

To spur advancement in face and person recognition we created the Point and Shoot Face Recognition Challenge (PaSC).  

Description

pasc_logo_lr_bordered

Inexpensive "point-and-shoot" camera technology combined with social network technology motivates the general population to use face recognition technology. Users expect a lot; they want to snap pictures, shoot videos, upload, and have their friends, family and acquaintances more-or-less automatically recognized. Despite the apparent simplicity of the problem, face recognition in this context is hard. Roughly speaking, failure rates in the 4 to 8 out of 10 range are common. In contrast, error rates drop to roughly 1 in 1,000 for well-controlled imagery. To spur advancement in face and person recognition we created the Point and Shoot Face Recognition Challenge (PaSC).  

The challenge includes 9,376 still images and 2,802 videos of 293 people. The images are balanced with respect to distance to the camera, alternative sensors, frontal versus not-frontal views, and different locations. Verification results are presented for public baseline algorithms and a commercial algorithm for three cases: comparing still images to still images, videos to videos, and still images to videos.  

Details of the PaSC can be found in the paper "The Challenge of Face Recognition from Digital Point-and-Shoot Cameras,'' J. R. Beveridge, P. J. Phillips, D. Bolme, B. A. Draper, G. H. Givens, Y-M. Lui, M. N. Teli, H. Zhang, W. T. Scruggs, K. W. Bowyer, P. J. Flynn, S. Cheng. Details on the implementation of the PaSC can be found at http://www.cs.colostate.edu/pasc/.  

"Report on the FG 2015 Video Person Recognition Evaluation", J.R. Beveridge, P.J. Flynn, Z. Feng, P. Huber, J. Kittler, Zhiwu Huang, S. Li, Y. Li, M. Kan, R. Wang, S. Shan, X. Chen, H. Li, G. Hau, V. Struc, J. Krizaj, C. Ding, D. Tao, P.J. Phillips.

"NISTIR 8015 - It's About the Face Distribution", P.J. Phillips, A.N. Yates, G.H. Givens,  J.R. Beveridge.

The PaSC is a collaborative effort between NIST and the Colorado State University. The data supporting the PaSC was collected at the University of Notre Dame.

In order to get the PaSC distribution, researchers will need to:

  1. Obtain the PaSC data set by following the instructions for the PaSC license on https://sites.google.com/a/nd.edu/public-cvrl/data-sets
  2. Download the PaSC data set
  3. Download the PaSC specifications, infrastructure, and baseline algorithms from http://www.cs.colostate.edu/pasc/.  

 

Created June 7, 2013, Updated June 2, 2021