While there is a clear need for communication networks supporting reliable information transfer between the various entities in the electric grid, there are many issues related to network performance, suitability, interoperability, and security that need to be resolved. This project will focus on identifying opportunities to tailor communication protocols that have been designed for network traffic control to provide quality of service (QoS) to smart grid applications and to manage power flows in the smart grid between traditional and renewable generation sources and between utility-owned and customer-owned assets. By creating collaborative links between the stakeholders, users, and standard developing organizations (SDOs) working on telecommunications, this project will promote the use and deployment of interoperable communication protocols for smart grid. In addition, the analytical and simulation tools and the published research findings that will be produced by this project will foster the development of new areas of inquiry into smart grid specific communication technologies.
In 2007, Congress passed the Energy Independence and Security Act, which tasked NIST with developing standards and protocols to ensure that Smart Grid systems are interoperable. An important part of the Smart Grid is the communications infrastructure, which utilities use to send command information between generation and distribution systems, and to exchange usage and billing information with their customers.
Traditionally, technology decisions have been dictated by offerings of system vendors, while business decisions are regulated by federal, state, and regional regulatory commissions and organizations (e.g. the Federal Energy Regulatory Commission, state Public Utility Commissions, and the North American Electric Reliability Corporation). While there are many choices of communications and networking standards, most of these standards were not developed specifically for smart grid applications. The new technical idea is to work directly with the smart grid stakeholders (utilities, regulators and consumers) and the telecommunication industry (vendors, SDOs, service providers) to identify communication requirements for smart grid applications, evaluate and develop communication standards, and develop guidelines and recommendations on their use and deployment. Also, the introduction of new power distribution technologies will transform the electrical network so that it will resemble regional and continental high speed telecommunications networks, although the transported commodity will be electrical power rather than data. This creates an opportunity to apply well-established analysis and optimization techniques from the telecommunications field to aid in the design of future electrical networks.
Our research plan is focused on understanding and modeling the power grid user and system behaviors and developing control and communication strategies for achieving the smart grid vision of a more efficient and dynamic electric grid.
Our goals: