NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Absolute Surface Coverage Measurement Using a Vibrational Overtone
Published
Author(s)
A C. Pipino, J P. Hoefnagels, N Watanabe
Abstract
Sub-monolayer absolute surface number densities are obtained by cavity ring-down spectroscopy (CRDS) for three haloethylenes with differing molecular symmetries on silica using the first C-H stretching overtones. Gas-phase CRDS measurements provide absolute absorption cross sections, while evanescent wave CRDS (EW-CRDS) measurements provide polarized absolute adsorbate spectra. The absolute surface number densities are found from conservation of the integrated band intensities with adsorption along with a measure of surface orientation as derived from the polarization anisotropy. The first stretching C-H overtones of trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and trans-dichloroethylene (t-DCE) occurring around 6050 cm-1 are probed with the idler of a seeded optical parametric amplifier having a 0.075 cm-1 linewidth. The EW-CRDS measurements employ a fused-silica monolithic folded resonator with a peak finesse of .28,500. An independent determination of the absolute surface coverage of TCE on a SiO2 surface is also obtained by mass-spectrometer-based uptake measurements. The sensitivity of EW-CRDS for TCE detection with an unclad resonator is found to be comparable to that obtained with a long-effective-path-length waveguide having a TCE-enriching polysiloxane coating.
Pipino, A.
, Hoefnagels, J.
and Watanabe, N.
(2004),
Absolute Surface Coverage Measurement Using a Vibrational Overtone, Journal of Chemical Physics
(Accessed October 14, 2025)