NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optical parametric oscillation (OPO) in a microresonator is promising as an efficient and scalable approach to on-chip coherent visible light generation. However, so far, only red light near the edge of the visible band at 710 nm has been reported. In this work, we demonstrate on- chip OPO covering >130 THz of the visible spectrum, including red, orange, yellow, and green wavelengths. In particular, using a pump laser that is scanned approximately 5 THz in the near- infrared from 386 THz (777 nm) to 391 THz (767 nm), the signal is tuned from the near-infrared at 395 THz (760 nm) to the visible at 528 THz (568 nm), while the idler is tuned from the near- infrared at 378 THz (794 nm) to the infrared at 254 THz (1180 nm). The widest signal-idler separation we demonstrate of 274 THz corresponds to more than an octave span and is the widest demonstrated for a nanophotonic OPO to date. Our work is a clear demonstration of how nonlinear nanophotonics can transform light from readily accessible compact near-infrared lasers to targeted visible wavelengths of interest, which is crucial for field-level deployment of spectroscopy and metrology systems.
Lu, X.
, Moille, G.
, Rao, A.
, Westly, D.
and Srinivasan, K.
(2020),
On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump, Optica, [online], https://doi.org/10.1364/OPTICA.393810, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929815
(Accessed October 16, 2025)