Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Compressible Fluid Dynamics in Materials Processing

Published

Author(s)

Steven P. Mates

Abstract

Two widely-utilized materials processing techniques, namely liquid metal atomization and thermal spraying, heavily involve compressible fluid dynamics. In liquid metal atomization, a hot melt stream is disintegrated by a cold supersonic gas jet into small droplets. These atomized droplets then freeze in-flight into powder particles, which are then collected.Atomized metal powders are used in powder metallurgy processing, rocket fuels, paints, dental amalgams, and many other applications. The characteristics of the atomized powder, including size distribution, microstructure and composition dependon the velocity, density and temperature distribution of the supersonic gas jet that governs liquid breakup and droplet solidification. In the thermal spray coating process, metallic or ceramic particles are injected into a hot, high-velocity jet formed by a nozzle driven with an electric arc driven plasma or hydrocarbon combustion. The injected particles are heated and accelerated towards the surface being coated. Thermal spray coatings, typically less than 1 mm thick, are formed by theimpact and solidification of individual molten or semi-molten droplets. They are applied to provide wear, corrosion and/or thermal protection to the underlying materials. Important coating properties including microstructure, porosity and adhesion, among others, are strongly influenced by the properties of the hot fluid jet produced by the thermal spray torch, which governs the momentum and heat transfer to the thermal spray particles and determines their velocity and temperature on impact. Control and optimization of these materials processing technniques requires a multidisciplinary effort involving both compressible fluid dynamics and materials science.
Citation
Electronic Publication

Keywords

atomized metal powders, compressible fluid dynamics, liquid metal atomization, materials science, thermal spraying

Citation

Mates, S. (2000), Compressible Fluid Dynamics in Materials Processing, Electronic Publication, [online], internal:/None (Accessed January 2, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created February 1, 2000, Updated February 17, 2017