Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping

Published

Author(s)

Siyuan Zhang, Hsun-Jen Chuang, SON LE, Curt A. Richter, Kathleen McCreary, Berend Jonker, Angela R. Hight Walker, Christina Hacker

Abstract

The development of processes to controllably dope two-dimensional semiconductors is critical to achieving next generation electronic and optoelectronic devices. Understanding the nature of the contacts is a critical step for realizing efficient charge injection in transition metal dichalcogenides. In this study, post-growth n-doping of chemical vapor deposition grown monolayer (ML) WS2 is achieved by treatment with solutions of molecular reductants. The extent of doping can be conveniently controlled by the concentration of dopant solutions and treatment time. Threshold voltage shifts and tunable channel current are observed in doped WS2 field-effect transistors. This molecular n-doping technique is particularly useful for the selective area doping needed for electrical contacts and reduces the contact resistance (Rc) in ML WS2 by more than two orders of magnitude. The significant reduction of Rc is attributed to the high electron-doping density achieved in WS2 which leads to a significant reduction of Schottky barrier width and height. As a proof-of-concept, following n-doping of monolayer WS2, we achieve high mobility of 97 cm2 V-1 S-1 and high on/off ratio exceeding 106. The dependence of mobility on temperature shows clear evidence of the strong suppression of charge-impurity scattering after the doping. High levels of doping allow the observation of a metal-insulator transition in monolayer WS2 due to strong electron-electron interactions. This doping technique provides a viable route to tailor the electrical properties and improve the contacts in transition metal dichalcogenides, paving the way for high-performance two-dimensional nanoelectronic devices.
Citation
AIP Advances
Volume
12
Issue
8

Keywords

transition metal dichalcogenides, charge-transfer doping, field-effect transistors, redox-active molecules

Citation

Zhang, S. , Chuang, H. , Le, S. , Richter, C. , McCreary, K. , Jonker, B. , Hight Walker, A. and Hacker, C. (2022), Control of the Schottky barrier height in monolayer WS2 FETs using molecular doping, AIP Advances, [online], https://doi.org/10.1063/5.0101033, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934233 (Accessed November 20, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created August 26, 2022, Updated November 29, 2022