An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cryogenic Fourier Transform Infrared Spectrometer from 4 to 20 Micrometers
Published
Author(s)
Simon G. Kaplan, Solomon I. Woods, Timothy M. Jung, Adriaan C. Carter
Abstract
We describe the design and performance of a cryogenic Fourier transform spectrometer (Cryo-FTS) operating at a temperature of approximately 15 K. The instrument is based on a porch-swing scanning mirror design with active alignment stabilization using a fiber-optic coupled diode laser and voice-coil actuator mechanism. It has a KBr beamsplitter and has been integrated into an infrared radiometer containing a calibrated Si:As blocked impurity band (BIB) detector. Due to its low operating temperature, the spectrometer exhibits very small thermal background signal and low drift. Data from tests of basic spectrometer function, such as modulation efficiency, scan jitter, spectral range, and spectral resolution are presented. We also present results from measurements of faint point-like sources in a low background environment, including background, signal offset and gain, and spectral noise equivalent power, and discuss the possible use of the instrument for spectral characterization of ground-based infrared astronomy calibration sources. The Cryo-FTS is presently limited to wavelengths below 25 micrometers but can be in principle extended to longer wavelengths with changes in beamsplitter and detector.
Kaplan, S.
, Woods, S.
, Jung, T.
and Carter, A.
(2010),
Cryogenic Fourier Transform Infrared Spectrometer from 4 to 20 Micrometers, Proceedings of SPIE, San Diego, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906098
(Accessed November 21, 2024)