NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Design Considerations for Enhancing Absorption in Semiconductors on Metals with Surface Plasmon Polaritons
Published
Author(s)
Christopher C. Bohn, Amit K. Agrawal, Youngmin Lee, Charles J. Choi, Matthew Davis, Paul M. Haney, Henri J. Lezec, Veronika A. Szalai
Abstract
Surface plasmon polaritons have attracted attention for energy applications such as photovoltaic and photoelectrochemical cells because of their ability to improve optical absorption in thin fi lms. We show that surface plasmon polaritons enhance absorption most signifi cantly in materials with small positive real permittivity and large positive imaginary permittivity, e.g. organics or CdTe. Additional losses, accounting for dissipation in the metal and the existence of a cuto ff frequency above which polaritons are no longer bound, are incorporated into efficiency calculations. Owing to these losses, devices with optical absorption based solely on SPPs will necessarily always have a lower efficiency than that predicted by the Shockley-Queisser limit. Calculations are presented for specifi c materials, including crystalline and amorphous Si, GaAs, CdTe, P3HT:PCBM, alpha -Fe2O3 and rutile TiO2, as well as for general materials of arbitrary permittivity. Guidelines for selecting absorber materials and determining whether specifi c materials are good candidates for improving optical absorption with SPPs are presented.
Bohn, C.
, Agrawal, A.
, Lee, Y.
, Choi, C.
, Davis, M.
, Haney, P.
, Lezec, H.
and Szalai, V.
(2014),
Design Considerations for Enhancing Absorption in Semiconductors on Metals with Surface Plasmon Polaritons, Physical Chemistry Chemical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915194
(Accessed October 16, 2025)