NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Disentangling topographic contributions to near-field scanning microwave microscopy images
Published
Author(s)
Samuel Berweger, Thomas Mitchell (Mitch) Wallis, Pavel Kabos, Kevin J. Coakley
Abstract
We develop empirical models to predict the contribution of topographicvariations to near-field scanning probe microwave microscopy (NSSM)images.In particular, we focus on |S11| images of a thin Perovskitephotovoltaic material and a GaN nanowire. The difference between the measured NSSM image and this prediction is our estimate of thecontribution of material property variations to the measured image. Prediction model parameters are determined from either a reference sample that is nearly free of material property variations or directly from the sample of interest. The parameters of the prediction model are determined by robust linear regression so as to minimize the effect of material property variations on results. For the case where the parameters are determined from the reference sample, the prediction is adjusted to account for instrument drift effects. Our statistical approach is fully empirical and thus complementary to current approaches based on physical models that are often overly simplistic.
Berweger, S.
, Wallis, T.
, Kabos, P.
and Coakley, K.
(2019),
Disentangling topographic contributions to near-field scanning microwave microscopy images, Ultramicroscopy, [online], https://doi.org/10.1016/j.ultramic.2018.11.003
(Accessed October 10, 2025)