NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dissipative preparation of W states in trapped ion systems
Published
Author(s)
Daniel Cole, Jenny Wu, Stephen Erickson, Panyu Hou, Andrew C. Wilson, Dietrich Leibfried, Florentin Reiter
Abstract
We present protocols for dissipative entanglement of three trapped-ion qubits, and we discuss in detail a scheme that uses sympathetic cooling as the dissipation mechanism. This scheme relies on tailored destructive interference to generate one of six target W states in a three-ion qubit space. Using a beryllium-magnesium ion crystal as an example system, we theoretically investigate the scheme's performance and the effects of likely error sources, including thermal secular motion of the ion crystal, spontaneous photon scattering, and calibration imperfections. We estimate that a fidelity of 98 % may be achieved in typical trapped ion experiments with 1 ms interaction time. Our schemes belong to a second generation of dissipative schemes that avoid timescale hierarchies for faster preparation of entangled states.
Cole, D.
, Wu, J.
, Erickson, S.
, Hou, P.
, Wilson, A.
, Leibfried, D.
and Reiter, F.
(2021),
Dissipative preparation of W states in trapped ion systems, New Journal of Physics, [online], https://doi.org/10.1088/1367-2630/ac09c8, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931901
(Accessed October 14, 2025)