NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Effect of Self-Assembled Monolayer Technology on Fiber-Matrix Adhesion
Published
Author(s)
Gale A. Holmes, E Feresenbet, D T. Raghavan
Abstract
The concept of an interphase region between an adherent and a matrix or adhesive was first introduced in 1972 by Sharpe. Since this introduction, the role of the interphase region in controlling the performance of fibrous composites has been extensively investigated. Adhesion in the interphase region of fibrous composites is often ascribed to (1) mechanical interlocking, (2) physicochemical interactions, (3) chemical bonding, and (4) mechanical deformation of the fiber-matrix interphase region (Sharpe and Drzal). Provided item 4 does not change dramatically with interphase composition, a recent model by I. M. Ward suggests that fiber-matrix adhesion can be modeled as an additive sum of the first three factors. Self-assembled monolayer technology has been used to assess the contribution of these factors. Preliminary data indicates that adhesion in commercial interfaces is primarily due to mechanical interlocking and covalent bonding.
Holmes, G.
, Feresenbet, E.
and Raghavan, D.
(2001),
Effect of Self-Assembled Monolayer Technology on Fiber-Matrix Adhesion, American Chemical Society Meeting, San Diego, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=851840
(Accessed October 10, 2025)