Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Energy efficient single flux quantum based neuromorphic computing

Published

Author(s)

Michael Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew Pufall, Pete Hopkins, William Rippard

Abstract

Many neuromorphic hardware technologies are being explored for their potential to increase the efficiency of computing certain problems, and thus facilitate machine learning with greater energy efficiency and or with more complexity. Among the technologies being developed, single flux quantum based Josephson junctions are a promising choice for their extremely low energy consumption and intrinsic spiking behavior. Recent experimental work has demonstrated nano- textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra- low training energies in the aJ regime. MJJ devices integrated with standard single flux quantum neural systems form a new class of neuromorphic technologies that have spiking energies between 10-18 J and 10-21 J, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perceptron and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current IC can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.
Proceedings Title
2017 IEEE International Conference on Rebooting Computing (ICRC)
Conference Dates
November 8-9, 2017
Conference Location
Washington, DC, US

Keywords

neuromorphic computing, single flux quantum, magnetic Josephson junctions

Citation

Schneider, M. , Donnelly, C. , Russek, S. , Baek, B. , Pufall, M. , Hopkins, P. and Rippard, W. (2018), Energy efficient single flux quantum based neuromorphic computing, 2017 IEEE International Conference on Rebooting Computing (ICRC) , Washington, DC, US, [online], https://doi.org/10.1109/ICRC.2017.8123634, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923689 (Accessed November 21, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created November 8, 2018, Updated April 19, 2022