Abstract
The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed matter systems, potentially including high-temperature superconductivity, making this a fertile area for exploration. Unfortunately, many properties of exotic strongly correlated systems (e.g. spin liquids) have proved difficult to study in part because calculations involving N-body entanglement become intractable for as few as N
~30 particles. Feynman divined that a quantum simulator – a special-purpose "analog" processor built using quantum particles (qubits) – would be inherently adept at such problems. Several recent experiments have demonstrated the feasibility of this approach at a small scale in the context of quantum magnetism. However, no useful simulator for quantum magnetism – consisting of at least 50 particles and allowing controlled, tunable interactions in a two-dimensional (2D) system – has yet been demonstrated owing to the technical challenge of realizing large-scale 2D qubit arrays. Here we simulate a range of Ising-type spin-spin interactions J_ij on a naturally occurring 2D triangular crystal of 100~(d_ij)^-a for 0.05