NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Image-based 3D Mapping of Rebar Location for Automated Assessment of Safe Drilling Areas Prior to Placing Embedments in Concrete Bridge Decks
Published
Author(s)
Mani Golparvar-Fard, Behshad Ghadimi, Kamel Saidi, Geraldine Cheok, Marek Franaszek, Robert R. Lipman
Abstract
This paper presents a new image-based approach for 3D mapping the locations of the rebar and embedded components in a railway bridge deck prior to placement of concrete. Our approach enables practitioners to quickly and automatically identify where the rebar and other underlying components are within the bridge decks, locate safe and unsafe drilling area, and creates a valuable documentation for future retrofit or rehabilitation of the concrete bridge decks. In the proposed method, digital images collected along the rebar cage prior to placement of concrete, are processed to automatically generate a 3D point cloud. Using a set of control points, the reconstructed point cloud is transformed into the site coordinate system. Next, a pattern recognition algorithm identifies the rebar locations. A cell-based map of the underlying structure is generated and the occupancies of the cells are automatically detected and visualized using a traffic light color spectrum. Impact of the number of images and control points on the accuracy and density of the image-based 3D reconstruction, registration, and automated recognition of the rebar locations and safe/unsafe cells are studied in detail. Results of our experiments show the promise on applicability of this low-cost approach in practice.
Proceedings Title
Proceedings of the 2012 Construction Research Congress
Golparvar-Fard, M.
, Ghadimi, B.
, Saidi, K.
, Cheok, G.
, Franaszek, M.
and Lipman, R.
(2012),
Image-based 3D Mapping of Rebar Location for Automated Assessment of Safe Drilling Areas Prior to Placing Embedments in Concrete Bridge Decks, Proceedings of the 2012 Construction Research Congress, West Lafayette, IN, US, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910289
(Accessed October 16, 2025)